Last updated: 2021-02-04

Checks: 7 0

Knit directory: misc/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(1) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version ddcef3b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.RData
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/ALStruct_cache/
    Ignored:    data/.Rhistory
    Ignored:    data/pbmc/

Untracked files:
    Untracked:  .dropbox
    Untracked:  Icon
    Untracked:  analysis/GHstan.Rmd
    Untracked:  analysis/GTEX-cogaps.Rmd
    Untracked:  analysis/PACS.Rmd
    Untracked:  analysis/Rplot.png
    Untracked:  analysis/SPCAvRP.rmd
    Untracked:  analysis/admm_02.Rmd
    Untracked:  analysis/admm_03.Rmd
    Untracked:  analysis/compare-transformed-models.Rmd
    Untracked:  analysis/cormotif.Rmd
    Untracked:  analysis/cp_ash.Rmd
    Untracked:  analysis/eQTL.perm.rand.pdf
    Untracked:  analysis/eb_prepilot.Rmd
    Untracked:  analysis/eb_var.Rmd
    Untracked:  analysis/ebpmf1.Rmd
    Untracked:  analysis/flash_test_tree.Rmd
    Untracked:  analysis/flash_tree.Rmd
    Untracked:  analysis/ieQTL.perm.rand.pdf
    Untracked:  analysis/lasso_em_03.Rmd
    Untracked:  analysis/m6amash.Rmd
    Untracked:  analysis/mash_bhat_z.Rmd
    Untracked:  analysis/mash_ieqtl_permutations.Rmd
    Untracked:  analysis/mixsqp.Rmd
    Untracked:  analysis/mr.ash_lasso_init.Rmd
    Untracked:  analysis/mr.mash.test.Rmd
    Untracked:  analysis/mr_ash_modular.Rmd
    Untracked:  analysis/mr_ash_parameterization.Rmd
    Untracked:  analysis/mr_ash_pen.Rmd
    Untracked:  analysis/mr_ash_ridge.Rmd
    Untracked:  analysis/mv_gaussian_message_passing.Rmd
    Untracked:  analysis/nejm.Rmd
    Untracked:  analysis/nmf_bg.Rmd
    Untracked:  analysis/normal_conditional_on_r2.Rmd
    Untracked:  analysis/normalize.Rmd
    Untracked:  analysis/pbmc.Rmd
    Untracked:  analysis/poisson_transform.Rmd
    Untracked:  analysis/pseudodata.Rmd
    Untracked:  analysis/qrnotes.txt
    Untracked:  analysis/ridge_iterative_02.Rmd
    Untracked:  analysis/ridge_iterative_splitting.Rmd
    Untracked:  analysis/samps/
    Untracked:  analysis/sc_bimodal.Rmd
    Untracked:  analysis/shrinkage_comparisons_changepoints.Rmd
    Untracked:  analysis/susie_en.Rmd
    Untracked:  analysis/susie_z_investigate.Rmd
    Untracked:  analysis/svd-timing.Rmd
    Untracked:  analysis/temp.RDS
    Untracked:  analysis/temp.Rmd
    Untracked:  analysis/test-figure/
    Untracked:  analysis/test.Rmd
    Untracked:  analysis/test.Rpres
    Untracked:  analysis/test.md
    Untracked:  analysis/test_qr.R
    Untracked:  analysis/test_sparse.Rmd
    Untracked:  analysis/z.txt
    Untracked:  code/multivariate_testfuncs.R
    Untracked:  code/rqb.hacked.R
    Untracked:  data/4matthew/
    Untracked:  data/4matthew2/
    Untracked:  data/E-MTAB-2805.processed.1/
    Untracked:  data/ENSG00000156738.Sim_Y2.RDS
    Untracked:  data/GDS5363_full.soft.gz
    Untracked:  data/GSE41265_allGenesTPM.txt
    Untracked:  data/Muscle_Skeletal.ACTN3.pm1Mb.RDS
    Untracked:  data/Thyroid.FMO2.pm1Mb.RDS
    Untracked:  data/bmass.HaemgenRBC2016.MAF01.Vs2.MergedDataSources.200kRanSubset.ChrBPMAFMarkerZScores.vs1.txt.gz
    Untracked:  data/bmass.HaemgenRBC2016.Vs2.NewSNPs.ZScores.hclust.vs1.txt
    Untracked:  data/bmass.HaemgenRBC2016.Vs2.PreviousSNPs.ZScores.hclust.vs1.txt
    Untracked:  data/eb_prepilot/
    Untracked:  data/finemap_data/fmo2.sim/b.txt
    Untracked:  data/finemap_data/fmo2.sim/dap_out.txt
    Untracked:  data/finemap_data/fmo2.sim/dap_out2.txt
    Untracked:  data/finemap_data/fmo2.sim/dap_out2_snp.txt
    Untracked:  data/finemap_data/fmo2.sim/dap_out_snp.txt
    Untracked:  data/finemap_data/fmo2.sim/data
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.config
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.k
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.k4.config
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.k4.snp
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.ld
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.snp
    Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.z
    Untracked:  data/finemap_data/fmo2.sim/pos.txt
    Untracked:  data/logm.csv
    Untracked:  data/m.cd.RDS
    Untracked:  data/m.cdu.old.RDS
    Untracked:  data/m.new.cd.RDS
    Untracked:  data/m.old.cd.RDS
    Untracked:  data/mainbib.bib.old
    Untracked:  data/mat.csv
    Untracked:  data/mat.txt
    Untracked:  data/mat_new.csv
    Untracked:  data/matrix_lik.rds
    Untracked:  data/paintor_data/
    Untracked:  data/running_data_chris.csv
    Untracked:  data/running_data_matthew.csv
    Untracked:  data/temp.txt
    Untracked:  data/y.txt
    Untracked:  data/y_f.txt
    Untracked:  data/zscore_jointLCLs_m6AQTLs_susie_eQTLpruned.rds
    Untracked:  data/zscore_jointLCLs_random.rds
    Untracked:  explore_udi.R
    Untracked:  output/fit.k10.rds
    Untracked:  output/fit.varbvs.RDS
    Untracked:  output/glmnet.fit.RDS
    Untracked:  output/test.bv.txt
    Untracked:  output/test.gamma.txt
    Untracked:  output/test.hyp.txt
    Untracked:  output/test.log.txt
    Untracked:  output/test.param.txt
    Untracked:  output/test2.bv.txt
    Untracked:  output/test2.gamma.txt
    Untracked:  output/test2.hyp.txt
    Untracked:  output/test2.log.txt
    Untracked:  output/test2.param.txt
    Untracked:  output/test3.bv.txt
    Untracked:  output/test3.gamma.txt
    Untracked:  output/test3.hyp.txt
    Untracked:  output/test3.log.txt
    Untracked:  output/test3.param.txt
    Untracked:  output/test4.bv.txt
    Untracked:  output/test4.gamma.txt
    Untracked:  output/test4.hyp.txt
    Untracked:  output/test4.log.txt
    Untracked:  output/test4.param.txt
    Untracked:  output/test5.bv.txt
    Untracked:  output/test5.gamma.txt
    Untracked:  output/test5.hyp.txt
    Untracked:  output/test5.log.txt
    Untracked:  output/test5.param.txt

Unstaged changes:
    Modified:   analysis/ash_delta_operator.Rmd
    Modified:   analysis/ash_pois_bcell.Rmd
    Modified:   analysis/index.Rmd
    Modified:   analysis/lasso_em.Rmd
    Modified:   analysis/minque.Rmd
    Modified:   analysis/mr_missing_data.Rmd
    Modified:   analysis/ridge_admm.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/vamp_01.Rmd) and HTML (docs/vamp_01.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd ddcef3b Matthew Stephens 2021-02-04 wflow_publish(“vamp_01.Rmd”)

library(ebnm)
library(glmnet)
Warning: package 'glmnet' was built under R version 3.6.2
Loading required package: Matrix
Loaded glmnet 4.1
library(ashr)

Introduction

My goal here is to implement a version of VAMP in R. I’m using algorithm 1 from Fletcher+Schniter (which includes EM steps, but I am ignoring those for now.)

I will try to use mostly their notation, where the model is \[y \sim N(Ax, 1/\theta_2)\] First I simulate some data under this model for testing:

M = 100
N = 10
A = matrix(rnorm(M*N, 0,1),nrow=M)
theta2 = 1
x = rnorm(N)
y = A %*% x + rnorm(M,0,sd=sqrt(1/theta2))

For comparison I’m going to do the ridge regression estimate. For prior \(x \sim N(0,s_x^2)\) the posterior on \(x\) is \(x \sim N(\mu_1,\Sigma_1)\) where \[\mu_1 = \theta_2 \Sigma_1 A'y\] and \[\Sigma_1 = (\theta_2 A'A + s_x^2 I)^{-1}.\]

S = chol2inv(chol(theta2 * t(A) %*% A + diag(N)))
x.rr = theta2 * S %*% t(A) %*% y

Now here is my initial implementation of vamp. Note there is no EB for now - the ebnm function has a fixed prior and just does the shrinkage.

This implmentation uses the idea of performing an svd of A to improve efficiency per iteration. The computationally intensive part without this trick is computing the inverse of \(Q\) (equations 8-10 in the EM-VAMP paper). Here I briefly outline this trick.

Assume \(A\) has SVD \(A=UDV'\), so \(A'A = VD^2V'\). If necessary include 0 eigenvalues in \(D\), so \(V\) is a square matrix with \(VV'=V'V=I\). Recall that \[Q:=\theta_2 A'A + \gamma_2 I\] so \[Q^{-1} = V (\theta_2 D^2 + \gamma_2 I)^{-1} V'\] Note that if \(d=diag(D)\) then \[(\theta_2 d_k^2 + \gamma_2)^{-1}= (1/\gamma_2)(1- a_k)\] where \[a_k:= \theta_2 d_k^2/(\theta_2 d_k^2 + \gamma_2).\]

So \[Q^{-1} = (1/\gamma_2)(I - V diag(a) V')\] and this has diagonal elements \[Q^{-1}_{ii} = (1/\gamma_2)(1 - \sum_k V^2_{ik} a_k)\]

Note that if \(d_k=0\) then \(a_k=0\) so there is no need to actually compute the parts of \(V\) that correspond to 0 eigenvalues.

#' @param A an M by N matrix of covariates
#' @param y an M vector of outcomes
#' @param ebnm_fn a function (eg from ebnm package) that takes parameters x and s and returns posterior mean and sd under a normal means model (no eb for now!)
vamp = function(A,y,ebnm_fn= function(x,s){ebnm_normal(x=x,s=s,mode=0,scale=1)}, r1.init = rnorm(ncol(A)), gamma1.init = 1, theta2=1, niter = 100){

  # initialize
  r1 = r1.init
  gamma1 = gamma1.init
  N = ncol(A)
  A.svd = svd(A)
  v = A.svd$v
  d = A.svd$d
  
  for(k in 1:niter){
    fit = do.call(ebnm_fn,list(x = r1,s = sqrt(1/gamma1)))
    x1 = fit$posterior$mean
    eta1 = 1/(mean(fit$posterior$sd^2))
    gamma2 = eta1 - gamma1
    r2 = (eta1 * x1 - gamma1 * r1)/gamma2
    
    # this is the brute force approach; superceded by the svd approach
    #Q = theta2 * t(A) %*% A + gamma2 * diag(N)
    #Qinv = chol2inv(chol(Q))
    #diag_Qinv = diag(Qinv)
    
    # The following avoids computing Qinv explicitly
    
    a = theta2*d^2/(theta2*d^2 + gamma2)
    #Qinv = (1/gamma2) * (diag(N) - v %*% diag(a) %*% t(v))
    diag_Qinv = (1/gamma2) * (1- colSums( a * t(v^2) ))
    
    eta2 = 1/mean(diag_Qinv)
    #x2 = Qinv %*% (theta2 * t(A) %*% y + gamma2 * r2)
    temp = (theta2 * t(A) %*% y + gamma2 * r2) # temp is a vector
    temp2= (v %*% (diag(a) %*% (t(v) %*% temp))) # matrix mult vdiag(a)v'temp efficiently
    x2 = (1/gamma2) * (temp - temp2)
    
    gamma1 = eta2 - gamma2
    
    r1 = (eta2 * x2 - gamma2 * r2)/ gamma1
  }
  return(fit = list(x1=x1,x2=x2, eta1=eta1, eta2=eta2))
}

Now I try this out with a normal prior (which should give same answer as ridge regression and does…)

fit = vamp(A,y)
plot(fit$x1,fit$x2, main="x1 vs x2")
abline(a=0,b=1)

plot(fit$x1,x.rr, main="comparison with ridge regression")
abline(a=0,b=1)

Note that the \(\eta\) values converge to the inverse of the mean of the digonal of the posterior variance.

fit$eta1 - fit$eta2
[1] 0
1/fit$eta1 - mean(diag(S))
[1] -2.844947e-16

A harder example

Here we try vamp on a problematic case for mean field from here

Here the prior is a 50-50 mixture of 0 and \(N(0,1)\). I’m going to give vamp both the true prior and the true residual variance.

  my_g = normalmix(pi=c(0.5,0.5), mean=c(0,0), sd=c(0,1))
  my_ebnm_fn = function(x,s){ebnm(x,s,g_init=my_g,fix_g = TRUE )}
  set.seed(123)
  n <- 500
  p <- 1000
  p_causal <- 500 # number of causal variables (simulated effects N(0,1))
  pve <- 0.95
  nrep = 10
  rmse_vamp = rep(0,nrep)
  rmse_glmnet = rep(0,nrep)
  
  for(i in 1:nrep){
    sim=list()
    sim$X =  matrix(rnorm(n*p,sd=1),nrow=n)
    B <- rep(0,p)
    causal_variables <- sample(x=(1:p), size=p_causal)
    B[causal_variables] <- rnorm(n=p_causal, mean=0, sd=1)

    sim$B = B
    sim$Y = sim$X %*% sim$B
    sigma2 = ((1-pve)/(pve))*sd(sim$Y)^2
    E = rnorm(n,sd = sqrt(sigma2))
    sim$Y = sim$Y + E
    
    fit_glmnet <- cv.glmnet(x=sim$X, y=sim$Y, family="gaussian", alpha=1, standardize=FALSE)  
    fit_vamp <- vamp(A=sim$X, y = sim$Y, ebnm_fn = my_ebnm_fn, niter=10)
    
    
    rmse_glmnet[i] = sqrt(mean((sim$B-coef(fit_glmnet)[-1])^2))
    rmse_vamp[i] = sqrt(mean((sim$B-fit_vamp$x1)^2))
  }
  
  plot(rmse_vamp,rmse_glmnet,main="vamp (true prior) vs glmnet")
  

  abline(a=0,b=1)


sessionInfo()
R version 3.6.0 (2019-04-26)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] ashr_2.2-51   glmnet_4.1    Matrix_1.2-18 ebnm_0.1-24  

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.6       pillar_1.4.6     compiler_3.6.0   later_1.1.0.1   
 [5] git2r_0.27.1     workflowr_1.6.2  iterators_1.0.12 tools_3.6.0     
 [9] digest_0.6.27    evaluate_0.14    lifecycle_0.2.0  tibble_3.0.4    
[13] lattice_0.20-41  pkgconfig_2.0.3  rlang_0.4.8      foreach_1.5.0   
[17] rstudioapi_0.11  yaml_2.2.1       xfun_0.16        invgamma_1.1    
[21] stringr_1.4.0    knitr_1.29       fs_1.5.0         vctrs_0.3.4     
[25] rprojroot_1.3-2  grid_3.6.0       glue_1.4.2       R6_2.4.1        
[29] survival_3.2-3   rmarkdown_2.3    mixsqp_0.3-43    irlba_2.3.3     
[33] magrittr_1.5     whisker_0.4      splines_3.6.0    codetools_0.2-16
[37] backports_1.1.10 promises_1.1.1   ellipsis_0.3.1   htmltools_0.5.0 
[41] shape_1.4.4      httpuv_1.5.4     stringi_1.4.6    truncnorm_1.0-8 
[45] SQUAREM_2020.3   crayon_1.3.4