Last updated: 2024-02-21
Checks: 7 0
Knit directory: misc/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(1)
was run prior to running the
code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 23487aa. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.RData
Ignored: analysis/.Rhistory
Ignored: analysis/ALStruct_cache/
Ignored: data/.Rhistory
Ignored: data/methylation-data-for-matthew.rds
Ignored: data/pbmc/
Untracked files:
Untracked: .dropbox
Untracked: Icon
Untracked: analysis/GHstan.Rmd
Untracked: analysis/GTEX-cogaps.Rmd
Untracked: analysis/PACS.Rmd
Untracked: analysis/Rplot.png
Untracked: analysis/SPCAvRP.rmd
Untracked: analysis/admm_02.Rmd
Untracked: analysis/admm_03.Rmd
Untracked: analysis/cache/
Untracked: analysis/cholesky.Rmd
Untracked: analysis/compare-transformed-models.Rmd
Untracked: analysis/cormotif.Rmd
Untracked: analysis/cp_ash.Rmd
Untracked: analysis/eQTL.perm.rand.pdf
Untracked: analysis/eb_prepilot.Rmd
Untracked: analysis/eb_var.Rmd
Untracked: analysis/ebpmf1.Rmd
Untracked: analysis/ebpmf_sla_text.Rmd
Untracked: analysis/ebspca_sims.Rmd
Untracked: analysis/explore_psvd.Rmd
Untracked: analysis/fa_check_identify.Rmd
Untracked: analysis/fa_iterative.Rmd
Untracked: analysis/flash_test_tree.Rmd
Untracked: analysis/flash_tree.Rmd
Untracked: analysis/flashier_newgroups.Rmd
Untracked: analysis/flashier_nmf_triples.Rmd
Untracked: analysis/flashier_pbmc.Rmd
Untracked: analysis/flashier_snn_shifted_prior.Rmd
Untracked: analysis/greedy_ebpmf_exploration_00.Rmd
Untracked: analysis/ieQTL.perm.rand.pdf
Untracked: analysis/lasso_em_03.Rmd
Untracked: analysis/m6amash.Rmd
Untracked: analysis/mash_bhat_z.Rmd
Untracked: analysis/mash_ieqtl_permutations.Rmd
Untracked: analysis/methylation_example.Rmd
Untracked: analysis/mixsqp.Rmd
Untracked: analysis/mr.ash_lasso_init.Rmd
Untracked: analysis/mr.mash.test.Rmd
Untracked: analysis/mr_ash_modular.Rmd
Untracked: analysis/mr_ash_parameterization.Rmd
Untracked: analysis/mr_ash_ridge.Rmd
Untracked: analysis/mv_gaussian_message_passing.Rmd
Untracked: analysis/nejm.Rmd
Untracked: analysis/nmf_bg.Rmd
Untracked: analysis/normal_conditional_on_r2.Rmd
Untracked: analysis/normalize.Rmd
Untracked: analysis/pbmc.Rmd
Untracked: analysis/pca_binary_weighted.Rmd
Untracked: analysis/pca_l1.Rmd
Untracked: analysis/poisson_nmf_approx.Rmd
Untracked: analysis/poisson_shrink.Rmd
Untracked: analysis/poisson_transform.Rmd
Untracked: analysis/pseudodata.Rmd
Untracked: analysis/qrnotes.txt
Untracked: analysis/ridge_iterative_02.Rmd
Untracked: analysis/ridge_iterative_splitting.Rmd
Untracked: analysis/samps/
Untracked: analysis/sc_bimodal.Rmd
Untracked: analysis/shrinkage_comparisons_changepoints.Rmd
Untracked: analysis/susie_en.Rmd
Untracked: analysis/susie_z_investigate.Rmd
Untracked: analysis/svd-timing.Rmd
Untracked: analysis/temp.RDS
Untracked: analysis/temp.Rmd
Untracked: analysis/test-figure/
Untracked: analysis/test.Rmd
Untracked: analysis/test.Rpres
Untracked: analysis/test.md
Untracked: analysis/test_qr.R
Untracked: analysis/test_sparse.Rmd
Untracked: analysis/tree_dist_top_eigenvector.Rmd
Untracked: analysis/z.txt
Untracked: code/multivariate_testfuncs.R
Untracked: code/rqb.hacked.R
Untracked: data/4matthew/
Untracked: data/4matthew2/
Untracked: data/E-MTAB-2805.processed.1/
Untracked: data/ENSG00000156738.Sim_Y2.RDS
Untracked: data/GDS5363_full.soft.gz
Untracked: data/GSE41265_allGenesTPM.txt
Untracked: data/Muscle_Skeletal.ACTN3.pm1Mb.RDS
Untracked: data/Thyroid.FMO2.pm1Mb.RDS
Untracked: data/bmass.HaemgenRBC2016.MAF01.Vs2.MergedDataSources.200kRanSubset.ChrBPMAFMarkerZScores.vs1.txt.gz
Untracked: data/bmass.HaemgenRBC2016.Vs2.NewSNPs.ZScores.hclust.vs1.txt
Untracked: data/bmass.HaemgenRBC2016.Vs2.PreviousSNPs.ZScores.hclust.vs1.txt
Untracked: data/eb_prepilot/
Untracked: data/finemap_data/fmo2.sim/b.txt
Untracked: data/finemap_data/fmo2.sim/dap_out.txt
Untracked: data/finemap_data/fmo2.sim/dap_out2.txt
Untracked: data/finemap_data/fmo2.sim/dap_out2_snp.txt
Untracked: data/finemap_data/fmo2.sim/dap_out_snp.txt
Untracked: data/finemap_data/fmo2.sim/data
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.config
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.k
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.k4.config
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.k4.snp
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.ld
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.snp
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.z
Untracked: data/finemap_data/fmo2.sim/pos.txt
Untracked: data/logm.csv
Untracked: data/m.cd.RDS
Untracked: data/m.cdu.old.RDS
Untracked: data/m.new.cd.RDS
Untracked: data/m.old.cd.RDS
Untracked: data/mainbib.bib.old
Untracked: data/mat.csv
Untracked: data/mat.txt
Untracked: data/mat_new.csv
Untracked: data/matrix_lik.rds
Untracked: data/paintor_data/
Untracked: data/running_data_chris.csv
Untracked: data/running_data_matthew.csv
Untracked: data/temp.txt
Untracked: data/y.txt
Untracked: data/y_f.txt
Untracked: data/zscore_jointLCLs_m6AQTLs_susie_eQTLpruned.rds
Untracked: data/zscore_jointLCLs_random.rds
Untracked: explore_udi.R
Untracked: output/fit.k10.rds
Untracked: output/fit.nn.rds
Untracked: output/fit.nn.s.001.rds
Untracked: output/fit.nn.s.01.rds
Untracked: output/fit.nn.s.1.rds
Untracked: output/fit.nn.s.10.rds
Untracked: output/fit.snn.s.001.rds
Untracked: output/fit.snn.s.01.nninit.rds
Untracked: output/fit.snn.s.01.rds
Untracked: output/fit.varbvs.RDS
Untracked: output/glmnet.fit.RDS
Untracked: output/snn07.txt
Untracked: output/snn34.txt
Untracked: output/test.bv.txt
Untracked: output/test.gamma.txt
Untracked: output/test.hyp.txt
Untracked: output/test.log.txt
Untracked: output/test.param.txt
Untracked: output/test2.bv.txt
Untracked: output/test2.gamma.txt
Untracked: output/test2.hyp.txt
Untracked: output/test2.log.txt
Untracked: output/test2.param.txt
Untracked: output/test3.bv.txt
Untracked: output/test3.gamma.txt
Untracked: output/test3.hyp.txt
Untracked: output/test3.log.txt
Untracked: output/test3.param.txt
Untracked: output/test4.bv.txt
Untracked: output/test4.gamma.txt
Untracked: output/test4.hyp.txt
Untracked: output/test4.log.txt
Untracked: output/test4.param.txt
Untracked: output/test5.bv.txt
Untracked: output/test5.gamma.txt
Untracked: output/test5.hyp.txt
Untracked: output/test5.log.txt
Untracked: output/test5.param.txt
Unstaged changes:
Modified: .gitignore
Modified: analysis/flashier_log1p.Rmd
Modified: analysis/flashier_sla_text.Rmd
Modified: analysis/mr_ash_pen.Rmd
Modified: analysis/susie_flash.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/irls.Rmd
) and HTML
(docs/irls.html
) files. If you’ve configured a remote Git
repository (see ?wflow_git_remote
), click on the hyperlinks
in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 23487aa | Matthew Stephens | 2024-02-21 | workflowr::wflow_publish("irls.Rmd") |
html | 2efb143 | Matthew Stephens | 2024-02-18 | Build site. |
Rmd | ae34e79 | Matthew Stephens | 2024-02-18 | workflowr::wflow_publish("irls.Rmd") |
html | fd42591 | Matthew Stephens | 2024-02-18 | Build site. |
Rmd | e0a1a48 | Matthew Stephens | 2024-02-18 | workflowr::wflow_publish("irls.Rmd") |
I wanted to use IRLS to fit a simple logistic regression. The following code does so for all columns of X simultaneously. That is, it fits y ~ mu + b Xj for j= 1…p.
I start by writing a function to fit a single vector x. The code is based on the IRLS algorithm for logistic regression, as described in the book “Elements of Statistical Learning” by Hastie, Tibshirani and Friedman (2009), section 4.4.1, written in a way that it makes it easy to vectorize/repeat over the columns of a matrix X via matrix multiplications. (See below)
logistic_IRLS_simple <- function(x, y, max_iter = 100, tolerance = 1e-6, lambda=0) {
# Initialize coefficients
mu <- 0
beta <- 0
converged <- FALSE
for (iter in 1:max_iter) {
eta <- mu + x * beta # Linear predictor
pi <- exp(eta) / (1 + exp(eta)) # Predicted probabilities
# Weights for IRLS
w <- pi * (1 - pi)
# Working response variable
z <- eta + (y - pi) / (pi * (1 - pi))
# Weighted least squares update
#These are the elements of the X'X matrix (a b) (c d)
a = sum(w)
b = sum(w*x)
c = sum(w*x)
d = sum(w*x^2) + lambda
wz = sum(w*z)
wxz = sum(w*x*z)
new_mu <- (d*wz - b*wxz) / (a*d - b*c)
new_beta <- (-c*wz + a*wxz) / (a*d - b*c)
# Check for convergence
if (all(abs(new_beta - beta) < tolerance)) {
converged = TRUE
break
}
beta <- new_beta
mu <- new_mu
}
# Return fitted coefficients
return(list(mu = mu, beta = beta, converged = converged, iter=iter))
}
Now I want to test the function with some simulated data. Simulate a simple logistic regression:
set.seed(1)
n <- 10000
x <- rnorm(n)
eta <- 5 + 2*x
pi <- exp(eta) / (1 + exp(eta))
y <- rbinom(n, 1, pi)
logistic_IRLS_simple(x, y)
$mu
[1] 5.043687
$beta
[1] 2.046827
$converged
[1] TRUE
$iter
[1] 9
glm(y~x, family = binomial)
Call: glm(formula = y ~ x, family = binomial)
Coefficients:
(Intercept) x
5.044 2.047
Degrees of Freedom: 9999 Total (i.e. Null); 9998 Residual
Null Deviance: 2994
Residual Deviance: 1998 AIC: 2002
And compare with glmnet. Note that glmnet requires two variables so I add an intercept. One thing I don’t understand: I tried setting “intercept=FALSE” but and not penalizing the intercept but it produced different results, which was unexpected.
library(glmnet)
Loading required package: Matrix
Loaded glmnet 4.1-8
fit = glmnet(cbind(rep(1,n),x), y, family="binomial",alpha=0, lambda=1/n)
fit$beta
2 x 1 sparse Matrix of class "dgCMatrix"
s0
.
x 2.031983
logistic_IRLS_simple(x, y, lambda=1)
$mu
[1] 5.024606
$beta
[1] 2.033247
$converged
[1] TRUE
$iter
[1] 9
fit = glmnet(cbind(rep(1,n),x), y, family="binomial",alpha=0, lambda=10/n)
fit$beta
2 x 1 sparse Matrix of class "dgCMatrix"
s0
.
x 1.920453
logistic_IRLS_simple(x, y, lambda=10)
$mu
[1] 4.872961
$beta
[1] 1.923797
$converged
[1] TRUE
$iter
[1] 9
fit2 = glmnet(cbind(rep(1,n),x), y, family="binomial",alpha=0, lambda=10/n, penalty.factor = c(0,1), intercept = FALSE)
coef(fit2)
3 x 1 sparse Matrix of class "dgCMatrix"
s0
(Intercept) .
.
x 0.2065842
coef(fit)
3 x 1 sparse Matrix of class "dgCMatrix"
s0
(Intercept) 4.868390
.
x 1.920453
I now write a function that repeats the above for all columns of X simultaneously via vector/matrix operations.
logistic_IRLS_simple_matrix <- function(X, y, max_iter = 100, tolerance = 1e-6, lambda = 0) {
# Initialize coefficients
p <- ncol(X)
mu <- rep(0,p)
beta <- rep(0,p)
converged <- FALSE
for (iter in 1:max_iter) {
eta <- t(mu + t(X) * beta) # Linear predictor
pi <- exp(eta) / (1 + exp(eta)) # Predicted probabilities
# Weights for IRLS
w <- pi * (1 - pi)
# Working response variable
z <- eta + (y - pi) / (pi * (1 - pi))
# Weighted least squares update
#These are the elements of the X'X matrix (a b) (c d)
a = colSums(w)
b = colSums(w*X)
c = b
d = colSums(w*X^2) + lambda
wz = colSums(w*z)
wxz = colSums(w*X*z)
new_mu <- (d*wz - b*wxz) / (a*d - b*c)
new_beta <- (-c*wz + a*wxz) / (a*d - b*c)
# Check for convergence
if (all(abs(new_beta - beta) < tolerance)) {
converged = TRUE
break
}
beta <- new_beta
mu <- new_mu
}
# Return fitted coefficients
return(list(mu = mu, beta = beta, converged = converged, iter=iter))
}
Now I test the function with some simulated data. It seems to work.
set.seed(1)
n <- 10000
X <- cbind(rnorm(n), rnorm(n))
eta <- 10 + 2*X[,1] + 3*X[,2]
pi <- exp(eta) / (1 + exp(eta))
y <- rbinom(n, 1, pi)
glm(y~X[,1], family = binomial)
Call: glm(formula = y ~ X[, 1], family = binomial)
Coefficients:
(Intercept) X[, 1]
6.084 1.427
Degrees of Freedom: 9999 Total (i.e. Null); 9998 Residual
Null Deviance: 764.1
Residual Deviance: 639.4 AIC: 643.4
glm(y~X[,2], family = binomial)
Call: glm(formula = y ~ X[, 2], family = binomial)
Coefficients:
(Intercept) X[, 2]
7.214 2.211
Degrees of Freedom: 9999 Total (i.e. Null); 9998 Residual
Null Deviance: 764.1
Residual Deviance: 521.9 AIC: 525.9
logistic_IRLS_simple_matrix(X, y)
$mu
[1] 6.083537 7.213586
$beta
[1] 1.427305 2.211099
$converged
[1] TRUE
$iter
[1] 10
sessionInfo()
R version 4.2.1 (2022-06-23)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur ... 10.16
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] glmnet_4.1-8 Matrix_1.6-4
loaded via a namespace (and not attached):
[1] Rcpp_1.0.12 pillar_1.9.0 compiler_4.2.1 bslib_0.6.1
[5] later_1.3.2 jquerylib_0.1.4 git2r_0.33.0 workflowr_1.7.1
[9] iterators_1.0.14 tools_4.2.1 digest_0.6.33 lattice_0.22-5
[13] jsonlite_1.8.8 evaluate_0.23 lifecycle_1.0.4 tibble_3.2.1
[17] pkgconfig_2.0.3 rlang_1.1.2 foreach_1.5.2 cli_3.6.2
[21] rstudioapi_0.15.0 yaml_2.3.8 xfun_0.41 fastmap_1.1.1
[25] stringr_1.5.1 knitr_1.45 fs_1.6.3 vctrs_0.6.5
[29] sass_0.4.8 rprojroot_2.0.4 grid_4.2.1 glue_1.6.2
[33] R6_2.5.1 fansi_1.0.6 survival_3.5-7 rmarkdown_2.25
[37] magrittr_2.0.3 whisker_0.4.1 splines_4.2.1 codetools_0.2-19
[41] promises_1.2.1 htmltools_0.5.7 shape_1.4.6 httpuv_1.6.13
[45] utf8_1.2.4 stringi_1.8.3 cachem_1.0.8