Last updated: 2018-08-31

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Repository version: a177f20

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/.RData
        Ignored:    analysis/.Rhistory
        Ignored:    analysis/ALStruct_cache/
        Ignored:    data/.Rhistory
        Ignored:    docs/figure/.DS_Store
    
    Untracked files:
        Untracked:  .dropbox
        Untracked:  Icon
        Untracked:  _workflowr.yml
        Untracked:  analysis/GTEX-cogaps.Rmd
        Untracked:  analysis/SPCAvRP.rmd
        Untracked:  analysis/eQTL.perm.rand.pdf
        Untracked:  analysis/ieQTL.perm.rand.pdf
        Untracked:  analysis/mash_bhat_z.Rmd
        Untracked:  analysis/mash_ieqtl_permutations.Rmd
        Untracked:  analysis/sc_bimodal.Rmd
        Untracked:  analysis/susie_example.Rmd
        Untracked:  analysis/test_sparse.Rmd
        Untracked:  analysis/z.txt
        Untracked:  code/multivariate_testfuncs.R
        Untracked:  data/4matthew/
        Untracked:  data/4matthew2/
        Untracked:  data/E-MTAB-2805.processed.1/
        Untracked:  data/ENSG00000156738.Sim_Y2.RDS
        Untracked:  data/GDS5363_full.soft.gz
        Untracked:  data/GSE41265_allGenesTPM.txt
        Untracked:  data/Muscle_Skeletal.ACTN3.pm1Mb.RDS
        Untracked:  data/Thyroid.FMO2.pm1Mb.RDS
        Untracked:  data/bmass.HaemgenRBC2016.MAF01.Vs2.MergedDataSources.200kRanSubset.ChrBPMAFMarkerZScores.vs1.txt.gz
        Untracked:  data/bmass.HaemgenRBC2016.Vs2.NewSNPs.ZScores.hclust.vs1.txt
        Untracked:  data/bmass.HaemgenRBC2016.Vs2.PreviousSNPs.ZScores.hclust.vs1.txt
        Untracked:  data/finemap_data/fmo2.sim/b.txt
        Untracked:  data/finemap_data/fmo2.sim/dap_out.txt
        Untracked:  data/finemap_data/fmo2.sim/dap_out2.txt
        Untracked:  data/finemap_data/fmo2.sim/dap_out2_snp.txt
        Untracked:  data/finemap_data/fmo2.sim/dap_out_snp.txt
        Untracked:  data/finemap_data/fmo2.sim/data
        Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.config
        Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.k
        Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.k4.config
        Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.k4.snp
        Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.ld
        Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.snp
        Untracked:  data/finemap_data/fmo2.sim/fmo2.sim.z
        Untracked:  data/finemap_data/fmo2.sim/pos.txt
        Untracked:  data/logm.csv
        Untracked:  data/m.cd.RDS
        Untracked:  data/m.cdu.old.RDS
        Untracked:  data/m.new.cd.RDS
        Untracked:  data/m.old.cd.RDS
        Untracked:  data/mainbib.bib.old
        Untracked:  data/mat.csv
        Untracked:  data/mat.txt
        Untracked:  data/mat_new.csv
        Untracked:  data/paintor_data/
        Untracked:  data/temp.txt
        Untracked:  data/y.txt
        Untracked:  data/y_f.txt
        Untracked:  docs/figure/eigen.Rmd/
        Untracked:  docs/figure/fmo2.sim.Rmd/
        Untracked:  docs/figure/newVB.elbo.Rmd/
        Untracked:  docs/figure/rbc_zscore_mash2.Rmd/
        Untracked:  docs/figure/rbc_zscore_mash2_analysis.Rmd/
        Untracked:  docs/figure/rbc_zscores.Rmd/
        Untracked:  docs/trend_files/
        Untracked:  docs/z.txt
        Untracked:  explore_udi.R
        Untracked:  output/fit.varbvs.RDS
        Untracked:  output/glmnet.fit.RDS
        Untracked:  output/test.bv.txt
        Untracked:  output/test.gamma.txt
        Untracked:  output/test.hyp.txt
        Untracked:  output/test.log.txt
        Untracked:  output/test.param.txt
        Untracked:  output/test2.bv.txt
        Untracked:  output/test2.gamma.txt
        Untracked:  output/test2.hyp.txt
        Untracked:  output/test2.log.txt
        Untracked:  output/test2.param.txt
        Untracked:  output/test3.bv.txt
        Untracked:  output/test3.gamma.txt
        Untracked:  output/test3.hyp.txt
        Untracked:  output/test3.log.txt
        Untracked:  output/test3.param.txt
        Untracked:  output/test4.bv.txt
        Untracked:  output/test4.gamma.txt
        Untracked:  output/test4.hyp.txt
        Untracked:  output/test4.log.txt
        Untracked:  output/test4.param.txt
        Untracked:  output/test5.bv.txt
        Untracked:  output/test5.gamma.txt
        Untracked:  output/test5.hyp.txt
        Untracked:  output/test5.log.txt
        Untracked:  output/test5.param.txt
    
    Unstaged changes:
        Modified:   analysis/_site.yml
        Deleted:    analysis/chunks.R
        Modified:   analysis/eigen.Rmd
        Modified:   analysis/fmo2.sim.Rmd
        Modified:   analysis/newVB.Rmd
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd a177f20 stephens999 2018-08-31 workflowr::wflow_publish(“ash-depletion.Rmd”)


Introduction

Let \(J\) denote the number of classes (eg 4 for DNA data).

Suppose we have observed \(J\)-vectors of counts \(x =(x_1,\dots,x_J)\) and \(y=(y_1,\dots,y_J)\), with \[x|p \sim Mult(n_p,p)\] and \[y|q \sim Mult(n_q,q).\]

If \(n_p,n_q\) are large it is natural to use a Poisson approximation: \[x_j \sim Poi(n_p p_j); y_j \sim Poi(n_q q_j)\] from which we have: \[x_j | (x_j+y_j) \sim Bin(x_j+y_j, \rho_j) \quad [*]\] where \[\rho_j = n_p p_j / (n_p p_j + n_q q_j).\]

Now note that \[\log[\rho_j/(1-\rho_j)] = n_p p_j / n_q q_j = \log[n_p/n_q] + \log[p_j/q_j] \quad [**]\] So estimating \(\log(p_j/q_j)\) is effectively the same problem as estimating \(\log(\rho_j/(1-\rho_j))\).

Now a natural esimate of \(\log(\rho_j/(1-\rho_j))\) from [*] is \(\log(x_j/y_j)\), but that does not work when either \(x_j\) or \(y_j\) is 0. We had exactly this problem in smash (Xing and Stephens). In that paper (section B.1) we developed a solution, which gives an estimator for \(\log(\rho_j/(1-\rho_j))\) and its standard error. So the idea is we can use that estimator (subtracting \(\log[n_p/n_q]\) as in [**]) as an estimator of \(\log[p_j/q_j]\). We also have standard errors, and can thus shrink these using ashr (estimating the mode using mode="estimate"). This gives us shrunken estimates of \(\log[p_j/q_j]\), and note that the shrinkage will be strongest for those with large se, which is the ones with small counts (especially 0s!)




This reproducible R Markdown analysis was created with workflowr 1.1.1