Last updated: 2018-10-09
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(12345)
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: cdfe5c5
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.RData
Ignored: analysis/.Rhistory
Ignored: analysis/ALStruct_cache/
Ignored: data/.Rhistory
Ignored: docs/figure/.DS_Store
Untracked files:
Untracked: .dropbox
Untracked: Icon
Untracked: _workflowr.yml
Untracked: analysis/GTEX-cogaps.Rmd
Untracked: analysis/SPCAvRP.rmd
Untracked: analysis/eQTL.perm.rand.pdf
Untracked: analysis/ieQTL.perm.rand.pdf
Untracked: analysis/mash_bhat_z.Rmd
Untracked: analysis/mash_ieqtl_permutations.Rmd
Untracked: analysis/pseudodata.Rmd
Untracked: analysis/sc_bimodal.Rmd
Untracked: analysis/susie_example.Rmd
Untracked: analysis/svd-timing.Rmd
Untracked: analysis/test_sparse.Rmd
Untracked: analysis/z.txt
Untracked: code/multivariate_testfuncs.R
Untracked: data/4matthew/
Untracked: data/4matthew2/
Untracked: data/E-MTAB-2805.processed.1/
Untracked: data/ENSG00000156738.Sim_Y2.RDS
Untracked: data/GDS5363_full.soft.gz
Untracked: data/GSE41265_allGenesTPM.txt
Untracked: data/Muscle_Skeletal.ACTN3.pm1Mb.RDS
Untracked: data/Thyroid.FMO2.pm1Mb.RDS
Untracked: data/bmass.HaemgenRBC2016.MAF01.Vs2.MergedDataSources.200kRanSubset.ChrBPMAFMarkerZScores.vs1.txt.gz
Untracked: data/bmass.HaemgenRBC2016.Vs2.NewSNPs.ZScores.hclust.vs1.txt
Untracked: data/bmass.HaemgenRBC2016.Vs2.PreviousSNPs.ZScores.hclust.vs1.txt
Untracked: data/finemap_data/fmo2.sim/b.txt
Untracked: data/finemap_data/fmo2.sim/dap_out.txt
Untracked: data/finemap_data/fmo2.sim/dap_out2.txt
Untracked: data/finemap_data/fmo2.sim/dap_out2_snp.txt
Untracked: data/finemap_data/fmo2.sim/dap_out_snp.txt
Untracked: data/finemap_data/fmo2.sim/data
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.config
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.k
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.k4.config
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.k4.snp
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.ld
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.snp
Untracked: data/finemap_data/fmo2.sim/fmo2.sim.z
Untracked: data/finemap_data/fmo2.sim/pos.txt
Untracked: data/logm.csv
Untracked: data/m.cd.RDS
Untracked: data/m.cdu.old.RDS
Untracked: data/m.new.cd.RDS
Untracked: data/m.old.cd.RDS
Untracked: data/mainbib.bib.old
Untracked: data/mat.csv
Untracked: data/mat.txt
Untracked: data/mat_new.csv
Untracked: data/paintor_data/
Untracked: data/temp.txt
Untracked: data/y.txt
Untracked: data/y_f.txt
Untracked: docs/figure/eigen.Rmd/
Untracked: docs/figure/fmo2.sim.Rmd/
Untracked: docs/figure/newVB.elbo.Rmd/
Untracked: docs/figure/rbc_zscore_mash2.Rmd/
Untracked: docs/figure/rbc_zscore_mash2_analysis.Rmd/
Untracked: docs/figure/rbc_zscores.Rmd/
Untracked: docs/trend_files/
Untracked: docs/z.txt
Untracked: explore_udi.R
Untracked: output/fit.varbvs.RDS
Untracked: output/glmnet.fit.RDS
Untracked: output/test.bv.txt
Untracked: output/test.gamma.txt
Untracked: output/test.hyp.txt
Untracked: output/test.log.txt
Untracked: output/test.param.txt
Untracked: output/test2.bv.txt
Untracked: output/test2.gamma.txt
Untracked: output/test2.hyp.txt
Untracked: output/test2.log.txt
Untracked: output/test2.param.txt
Untracked: output/test3.bv.txt
Untracked: output/test3.gamma.txt
Untracked: output/test3.hyp.txt
Untracked: output/test3.log.txt
Untracked: output/test3.param.txt
Untracked: output/test4.bv.txt
Untracked: output/test4.gamma.txt
Untracked: output/test4.hyp.txt
Untracked: output/test4.log.txt
Untracked: output/test4.param.txt
Untracked: output/test5.bv.txt
Untracked: output/test5.gamma.txt
Untracked: output/test5.hyp.txt
Untracked: output/test5.log.txt
Untracked: output/test5.param.txt
Unstaged changes:
Modified: analysis/_site.yml
Deleted: analysis/chunks.R
Modified: analysis/eigen.Rmd
Modified: analysis/fmo2.sim.Rmd
Modified: analysis/newVB.Rmd
Modified: analysis/wSVD.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
I’m going to try to do a version of Poisson low rank approximation in R so I can play with it, based on Abhishek Sarkar’s python code (here)[https://github.com/aksarkar/wlra/blob/master/wlra/wlra.py].
# return truncated svd (truncated to rank principal components)
lra = function(x, rank){
x.svd = svd(x,nu=rank,nv=rank)
return(x.svd$u %*% diag(x.svd$d[1:rank],nrow=rank) %*% t(x.svd$v))
}
# Return the weighted low rank approximation of x
# Minimize the weighted Frobenius norm between x and the approximation z using EM [SJ03].
#
#' @param x input data (n, p)
#' @param w input weights (n, p)
#' @param rank rank of the approximation (non-negative)
#' @param max_iters - maximum number of EM iterations
#' @param atol - minimum absolute difference in objective function for convergence
#' @param verbose - print objective function updates
#' @return an n by p matrix
wlra = function(x, w, rank, max_iters=1000, atol=1e-3,verbose=FALSE){
n = nrow(x)
p = ncol(x)
# Important: WLRA requires weights 0 <= w <= 1
w = w/max(w)
# Important: the procedure is deterministic, so initialization
# matters.
#
# Srebro and Jaakkola suggest the best strategy is to initialize
# from zero, but go from a full rank down to a rank k approximation in
# the first iterations
#
# For now, take the simpler strategy of just initializing to zero. Srebro and
# Jaakkola suggest this can underfit.
z = matrix(0,nrow=n,ncol=p)
obj = mean(w * x^2)
if(verbose){
print(paste0("wsvd [0]=",obj))
}
for(i in 0:max_iters){
z1 = lra(w * x + (1 - w) * z, rank)
update = mean(w * (x - z1)^2)
if(verbose){print(paste0("wsvd [",i+1,"]=",update))}
if(update > obj){
stop("objective increased")
} else if(max(abs(update-obj))<atol){
return(z1)
} else {
z = z1
obj = update
}
}
stop("failed to converge")
}
# return log(p(Y|lambda=exp(eta))) for Y \sim Poi(lambda)
pois_llik= function(y, eta){
sum(dpois(y,exp(eta),log=TRUE))
}
#' @details Assume x_ij ~ Poisson(exp(eta_ij)), eta_ij = L_ik F_kj
#' Maximize the log likelihood by using Taylor approximation to rewrite the problem as WLRA.
#' @param x: input data (n, p)
#' @param rank: rank of the approximation
#' @param max_outer_iters: maximum number of calls to WLRA
#' @param max_iters: maximum number of EM iterations in WLRA
#' @param verbose: print objective function updates
#' @return low rank approximation (n, p) matrix
pois_lra= function(x, rank, max_outer_iters=50, max_iters=1000, atol=1e-3, verbose=FALSE){
n = nrow(x)
p = ncol(x)
nmf = NNLM::nnmf(x, rank)
eta = log(nmf$W %*% nmf$H)
obj = mean(pois_llik(x, eta))
if(verbose)
print(paste0("pois_lra [0]:",obj))
for(i in 0:max_outer_iters){
lam = exp(eta)
w = lam
target = eta + x / lam - 1
w[is.na(x)]=0 # Mark missing data with weight 0
# Now we can go ahead and fill in the missing values with something
# computationally convenient, because the WLRA EM update will ignore the
# value for weight zero.
target[is.na(x)] = 0
eta1 = wlra(target, w, rank, max_iters=max_iters, atol=atol, verbose=verbose)
update = mean(pois_llik(x, eta1))
if(verbose){
print(paste0("pois_lra [",i + 1,"]:",update))
}
if(max(abs(update-obj))<atol){
return(list(fit=eta1,w=w,target=target))
} else {
eta = eta1
obj = update
}
}
stop("failed to converge")
}
# this just does a simple TSE about lam and runs wSVD once without any iteration
pois_lra1 = function(x, rank, lam = ifelse(x>0,x,0.5), max_iters=1000, atol=1e-3, verbose=FALSE){
target = log(lam) + x / lam - 1
w = lam
w[is.na(x)]=0 # Mark missing data with weight 0
# Now we can go ahead and fill in the missing values with something
# computationally convenient, because the WLRA EM update will ignore the
# value for weight zero.
target[is.na(x)] = 0
eta1 = wlra(target, w, rank, max_iters=max_iters, atol=atol, verbose=verbose)
return(list(fit=eta1,w=w,target=target))
}
First simulate some data:
set.seed(1)
l = rnorm(100)
f = rnorm(100)
eta = outer(l,f)
lambda = exp(eta)
x = matrix(rpois(length(lambda),lambda),nrow=nrow(lambda))
Now fit various models: the plra, plra1 with the “naive” expansion (around x, or 0.5 for x=0) and around the true value of lambda:
x.plra=pois_lra(x,rank=1,verbose=TRUE)
[1] "pois_lra [0]:-56393.8383721883"
[1] "wsvd [0]=9.11187664142563"
[1] "wsvd [1]=9.09767330084035"
[1] "wsvd [2]=9.0942294282996"
[1] "wsvd [3]=9.09252076154906"
[1] "wsvd [4]=9.09146781601123"
[1] "wsvd [5]=9.09073663864168"
[1] "pois_lra [1]:-20730.5265718132"
[1] "wsvd [0]=0.0254032600526617"
[1] "wsvd [1]=0.018730302153258"
[1] "wsvd [2]=0.0173472213350827"
[1] "wsvd [3]=0.0166205649043371"
[1] "pois_lra [2]:-24476.2310334721"
[1] "wsvd [0]=0.0342958650072393"
[1] "wsvd [1]=0.0302492341697698"
[1] "wsvd [2]=0.0295946545829222"
[1] "pois_lra [3]:-26631.5708456328"
[1] "wsvd [0]=0.0594742391599983"
[1] "wsvd [1]=0.0558114666026009"
[1] "wsvd [2]=0.0551636349735505"
[1] "pois_lra [4]:-26775.5968189102"
[1] "wsvd [0]=0.0654476543467692"
[1] "wsvd [1]=0.0617080003798833"
[1] "wsvd [2]=0.0609634116407461"
[1] "pois_lra [5]:-26663.0720352895"
[1] "wsvd [0]=0.0639419959608682"
[1] "wsvd [1]=0.0601941802731442"
[1] "wsvd [2]=0.0594430040900086"
[1] "pois_lra [6]:-26653.5190878185"
[1] "wsvd [0]=0.0637737656022713"
[1] "wsvd [1]=0.0600262104698666"
[1] "wsvd [2]=0.0592754713652051"
[1] "pois_lra [7]:-26653.9093042342"
[1] "wsvd [0]=0.063778632660418"
[1] "wsvd [1]=0.0600311044827268"
[1] "wsvd [2]=0.0592803862918574"
[1] "pois_lra [8]:-26653.9404182592"
[1] "wsvd [0]=0.0637791754208205"
[1] "wsvd [1]=0.0600316465363189"
[1] "wsvd [2]=0.0592809270276872"
[1] "pois_lra [9]:-26653.9393089239"
[1] "wsvd [0]=0.0637791618254631"
[1] "wsvd [1]=0.0600316328646063"
[1] "wsvd [2]=0.0592809132945037"
[1] "pois_lra [10]:-26653.9392199259"
x.plra1.naive=pois_lra1(x,rank=1,verbose=TRUE)
[1] "wsvd [0]=0.0357370934894206"
[1] "wsvd [1]=0.0216973393395743"
[1] "wsvd [2]=0.0183559836838193"
[1] "wsvd [3]=0.0166671902679346"
[1] "wsvd [4]=0.0156058206162763"
[1] "wsvd [5]=0.0148556454379835"
x.plra1.true = pois_lra1(x,1,lam=lambda)
pois_llik(x,eta) #log likelihood at true value of eta
[1] -13269.62
pois_llik(x,x.plra$fit)
[1] -26653.94
pois_llik(x,x.plra1.naive$fit)
[1] -20770.27
pois_llik(x,x.plra1.true$fit)
[1] -20830.33
This was weird that expansion around the truth was so bad. So I tried more stringent convergence:
x.plra1.true2 = pois_lra1(x,1,lam=lambda,max_iters = 10000,atol=1e-9)
x.plra1.naive2 = pois_lra1(x,1,max_iters = 10000,atol=1e-9)
pois_llik(x,x.plra1.naive2$fit)
[1] -13163.59
pois_llik(x,x.plra1.true2$fit)
[1] -13145.19
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: OS X El Capitan 10.11.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
loaded via a namespace (and not attached):
[1] workflowr_1.1.1 Rcpp_0.12.19 NNLM_0.4.2
[4] digest_0.6.17 rprojroot_1.3-2 R.methodsS3_1.7.1
[7] backports_1.1.2 git2r_0.23.0 magrittr_1.5
[10] evaluate_0.11 stringi_1.2.4 whisker_0.3-2
[13] R.oo_1.22.0 R.utils_2.7.0 rmarkdown_1.10
[16] tools_3.5.1 stringr_1.3.1 yaml_2.2.0
[19] compiler_3.5.1 htmltools_0.3.6 knitr_1.20
This reproducible R Markdown analysis was created with workflowr 1.1.1