• Introduction
  • Read in data
  • Abbreviations
  • Processing

Last updated: 2021-05-22

Checks: 7 0

Knit directory: stat34800/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20180411) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 4c273ba. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  analysis/currency_analysis.Rmd
    Untracked:  analysis/stocks_analysis.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/currency_read_transform.Rmd) and HTML (docs/currency_read_transform.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 4c273ba Matthew Stephens 2021-05-22 workflowr::wflow_publish(c(“currency_read_transform.Rmd”, “index.Rmd”))

Introduction

In this document I read in some currency data, provide a brief explanation of the data, and illustrate some preliminary transformations one might perform. I had the intention of using these for a homework but my initial analyses suggested the structure in the data are a bit subtle so I decided not to use them in homework for now.

Read in data

The data were downloaded and saved in the data directory as documented here. They consist of daily exchange rates (vs the US dollar, abbreviated USD) for 191 currencies. Note that the first column is USD itself, so exchange rate is always 1. Note also that the first row is the most recent day, and last row is about 6 months ago; so that the vector of observations is “forwards in time” I reverse the rows here.

df = read.csv("../data/currency.csv")
df = apply(df,2,rev)
head(df)
     USD      AFN      ALL      DZD      ADF      ADP      AOA      AON
[1,]   1 77.55678 100.7960 133.2532 5.375572 136.3534 651.9257 651.9257
[2,]   1 77.55882 100.7908 133.2600 5.372510 136.2758 654.0225 654.0225
[3,]   1 77.47788 101.1647 133.1630 5.375756 136.3581 654.0225 654.0225
[4,]   1 77.51461 101.2862 133.1416 5.400298 136.9806 654.2156 654.2156
[5,]   1 77.55966 101.3104 133.1703 5.400690 136.9906 654.3345 654.3345
[6,]   1 77.55780 101.3107 133.1708 5.400734 136.9917 654.3345 654.3345
          ARS      AMD      AWG      AUD      ATS  AZM AZN BSD      BHD
[1,] 94.21951 520.7243 1.800496 1.289106 11.27658 8500 1.7   1 0.376997
[2,] 94.13756 521.1502 1.800197 1.289481 11.27015 8500 1.7   1 0.376964
[3,] 94.09492 521.7294 1.800000 1.282953 11.27696 8500 1.7   1 0.376967
[4,] 94.02003 522.1481 1.800594 1.288658 11.32844 8500 1.7   1 0.377032
[5,] 93.95288 522.8234 1.801000 1.285934 11.32927 8500 1.7   1 0.376959
[6,] 93.95670 522.8194 1.801000 1.286010 11.32936 8500 1.7   1 0.376960
          BDT BBD      BYR      BEF      BZD BMD      BTN      BOB      BAM
[1,] 84.77590   2 25133.70 33.05858 2.015282   1 73.12829 6.897928 1.602804
[2,] 84.78186   2 25145.60 33.03974 2.015424   1 73.21202 6.898850 1.601891
[3,] 84.77053   2 25170.96 33.05970 2.015175   1 73.15954 6.897486 1.602859
[4,] 84.72446   2 25188.83 33.21064 2.014188   1 73.33233 6.893684 1.610176
[5,] 84.83234   2 25209.66 33.21305 2.016686   1 73.30200 6.900616 1.610294
[6,] 84.83187   2 25209.66 33.21332 2.016668   1 73.30200 6.900830 1.610306
          BWP      BRL      GBP      BND      BGN      BIF      XOF      XAF
[1,] 10.72734 5.297747 0.706900 1.332223 1.602804 1971.805 537.5572 537.5572
[2,] 10.72954 5.278371 0.706270 1.332034 1.601891 1971.552 537.2510 537.2510
[3,] 10.74814 5.265288 0.704853 1.330614 1.602859 1971.718 537.5755 537.5755
[4,] 10.78458 5.272674 0.708659 1.335327 1.610176 1972.596 540.0298 540.0298
[5,] 10.80960 5.272562 0.709360 1.332250 1.610294 1973.764 540.0691 540.0691
[6,] 10.81163 5.272575 0.709381 1.332190 1.610306 1973.750 540.0734 540.0734
          XPF      KHR      CAD      CVE      KYD      CLP      CNY      COP
[1,] 97.79241 4072.802 1.209246 90.36225 0.833333 716.5579 6.436723 3700.721
[2,] 97.73670 4072.059 1.209236 90.31077 0.833333 713.8572 6.433039 3670.309
[3,] 97.79574 4070.862 1.204702 90.36532 0.833333 714.3382 6.426793 3672.671
[4,] 98.24222 4066.541 1.209840 90.77788 0.833333 706.5085 6.439360 3685.499
[5,] 98.24936 4068.980 1.210879 90.78448 0.833333 699.8043 6.437098 3685.404
[6,] 98.25016 4069.000 1.210840 90.78522 0.833333 699.8000 6.437100 3685.403
          KMF      CDF      CRC      HRK CUC CUP      CYP      CZK      DKK
[1,] 403.1679 2001.798 615.8054 6.154434   1  25 0.479632 20.89102 6.093880
[2,] 402.9383 2000.393 615.2150 6.152455   1  25 0.479360 20.84736 6.090382
[3,] 403.1817 2000.000 614.4476 6.161482   1  25 0.479648 20.82764 6.094282
[4,] 405.0224 1998.099 614.8929 6.186642   1  25 0.481838 20.94835 6.122161
[5,] 405.0518 1997.000 616.1825 6.188616   1  25 0.481874 20.94929 6.123070
[6,] 405.0551 1997.000 616.1864 6.188550   1  25 0.481878 20.94755 6.123195
        DJF      DOP      NLG      XEU XCD     ECS      EGP  SVC      EEK
[1,] 177.71 56.91119 1.805942 0.819500 2.7 24840.5 15.68058 8.75 12.82240
[2,] 177.71 56.90120 1.804913 0.819034 2.7 24840.5 15.68065 8.75 12.81510
[3,] 177.71 56.90782 1.806004 0.819528 2.7 24840.5 15.68300 8.75 12.82284
[4,] 177.71 56.84101 1.814248 0.823270 2.7 24840.5 15.68453 8.75 12.88138
[5,] 177.71 56.89765 1.814380 0.823330 2.7 24840.5 15.65758 8.75 12.88231
[6,] 177.71 56.89816 1.814395 0.823337 2.7 24840.5 15.65810 8.75 12.88242
          ETB      EUR      FKP      FJD      FIM      FRF      GMD      GEL
[1,] 42.71242 0.819500 0.706900 2.039233 4.872530 5.375572 51.18798 3.363998
[2,] 42.63885 0.819034 0.706270 2.033178 4.869754 5.372510 51.18808 3.379678
[3,] 42.52036 0.819528 0.704853 2.034982 4.872696 5.375756 51.17690 3.393392
[4,] 42.58856 0.823270 0.708659 2.038017 4.894942 5.400298 51.20226 3.408282
[5,] 42.48736 0.823330 0.709360 2.045278 4.895298 5.400690 51.22228 3.410000
[6,] 42.48698 0.823337 0.709381 2.045316 4.895338 5.400734 51.22250 3.410000
          DEM      GHC      GHS      GIP      XAU      GRD      GTQ      GNF
[1,] 1.602804 57677.82 5.767782 0.706900 0.000534 279.2449 7.710186 9869.338
[2,] 1.601891 57625.02 5.762502 0.706270 0.000535 279.0858 7.709926 9870.280
[3,] 1.602859 57635.72 5.763572 0.704853 0.000535 279.2544 7.709894 9868.614
[4,] 1.610176 57616.43 5.761643 0.708659 0.000538 280.5293 7.707170 9853.150
[5,] 1.610294 57653.25 5.765325 0.709360 0.000542 280.5497 7.717958 9873.730
[6,] 1.610306 57650.00 5.765000 0.709381 0.000542 280.5520 7.717856 9873.700
          GYD      HTG      HNL      HKD      HUF      ISK      INR      IDR
[1,] 209.1105 87.05188 24.04647 7.763339 286.7956 122.6308 73.12829 14379.58
[2,] 209.0722 87.60125 24.04686 7.764738 287.2718 122.9402 73.21202 14362.65
[3,] 209.0374 88.08152 24.03262 7.765632 287.5513 123.4239 73.15954 14305.28
[4,] 209.0013 88.04770 23.99281 7.766873 290.5671 124.3414 73.33233 14313.82
[5,] 209.2866 88.15680 24.09087 7.767422 292.4654 124.2447 73.30200 14270.66
[6,] 209.2864 88.16450 24.09130 7.767430 292.4500 124.2400 73.30200 14271.45
       IRR      IQD      IEP      ILS      ITL      JMD      JPY   JOD      KZT
[1,] 42105 1461.650 0.645409 3.260680 1586.775 149.8701 108.9501 0.709 428.7390
[2,] 42105 1462.068 0.645042 3.262319 1585.871 150.0324 109.0322 0.709 427.7619
[3,] 42105 1461.579 0.645431 3.264721 1586.829 150.2390 108.9985 0.709 426.9841
[4,] 42105 1459.314 0.648378 3.277410 1594.073 150.4282 109.2363 0.709 427.6821
[5,] 42105 1462.500 0.648425 3.274062 1594.189 151.0657 109.3479 0.709 428.2274
[6,] 42105 1462.500 0.648430 3.273965 1594.202 151.0716 109.3480 0.709 428.2387
          KES      KWD      KGS      LAK      LVL    LBP      LSL      LRD
[1,] 108.1388 0.300718 83.97053 9428.330 0.575948 1507.5 14.03680 171.7004
[2,] 107.8005 0.300666 84.09905 9431.388 0.575620 1507.5 14.04558 171.7383
[3,] 107.4374 0.300708 84.27063 9428.887 0.575968 1507.5 14.02133 171.7457
[4,] 107.2273 0.300955 84.44400 9424.178 0.578598 1507.5 14.13427 171.8291
[5,] 107.1744 0.300976 84.62130 9437.237 0.578640 1507.5 14.12770 171.8775
[6,] 107.1748 0.300975 84.62130 9437.775 0.578644 1507.5 14.12636 171.8775
          LYD      LTL      LUF      MOP      MKD      MGA     MGF      MWK
[1,] 4.457198 2.829572 33.05858 7.996238 50.57295 3755.133 9150.23 794.2017
[2,] 4.461241 2.827960 33.03974 7.997680 50.57519 3752.808 9150.23 795.0782
[3,] 4.463320 2.829668 33.05970 7.998602 50.64267 3753.923 9150.23 794.6843
[4,] 4.461280 2.842587 33.21064 7.999880 50.75646 3754.364 9150.23 794.7507
[5,] 4.464134 2.842794 33.21305 8.000446 50.91593 3760.029 9150.23 791.2576
[6,] 4.464100 2.842817 33.21332 8.000453 50.91506 3760.066 9150.23 791.2475
          MYR      MVR      MTL      MRO      MUR      MXN      MDL    MNT
[1,] 4.142705 15.42355 0.351812 359.7297 40.56061 19.89434 17.74316 2623.5
[2,] 4.133092 15.40254 0.351611 359.7235 40.32022 19.88426 17.76962 2623.5
[3,] 4.126302 15.40281 0.351824 359.5122 40.36581 19.79173 17.76119 2623.5
[4,] 4.131724 15.43637 0.353430 359.3081 40.56948 19.86097 17.73571 2623.5
[5,] 4.125562 15.36414 0.353456 359.4493 40.59998 19.86643 17.77700 2623.5
[6,] 4.125500 15.36000 0.353458 359.4497 40.60000 19.86545 17.77699 2623.5
          MAD      MZM      MZN      MMK  ANG      NAD      NPR      NZD
[1,] 8.821550 59515.18 59.51519 1557.100 1.79 14.03680 116.9628 1.391033
[2,] 8.813168 59265.16 59.26516 1557.100 1.79 14.04558 116.9124 1.389223
[3,] 8.820497 59123.85 59.12385 1557.100 1.79 14.02133 116.8882 1.380269
[4,] 8.844010 58989.00 58.98900 1556.295 1.79 14.13427 117.0193 1.386222
[5,] 8.843872 58900.00 58.90000 1558.259 1.79 14.12770 117.3595 1.379825
[6,] 8.843100 58900.00 58.90000 1558.250 1.79 14.12636 117.3654 1.379750
          NIO      NGN KPW      NOK      OMR      PKR      XPD PAB      PGK
[1,] 35.15603 412.2217 135 8.311649 0.384974 153.2944 0.000348   1 3.520750
[2,] 35.18372 409.1693 135 8.274190 0.385006 153.0350 0.000346   1 3.523240
[3,] 35.13374 398.2206 135 8.223113 0.385001 152.8139 0.000344   1 3.511260
[4,] 34.96943 407.1490 135 8.257338 0.384978 152.3677 0.000346   1 3.520340
[5,] 35.12866 411.9694 135 8.222546 0.384999 152.2766 0.000345   1 3.533025
[6,] 35.13375 413.0000 135 8.222345 0.384998 152.2766 0.000345   1 3.533276
          PYG      PEN      PHP      XPT      PLN      PTE      QAR      ROL
[1,] 6698.824 3.744818 47.88528 0.000830 3.694446 164.2951 3.641413 40383.89
[2,] 6700.672 3.743728 47.84429 0.000826 3.704386 164.2015 3.641385 40357.08
[3,] 6694.352 3.720226 47.85302 0.000814 3.707853 164.3007 3.641365 40376.38
[4,] 6704.468 3.673320 47.86392 0.000810 3.730151 165.0508 3.644196 40545.74
[5,] 6718.768 3.674190 47.75205 0.000816 3.728934 165.0628 3.641310 40552.95
[6,] 6719.506 3.674225 47.75250 0.000816 3.729000 165.0642 3.641000 40552.00
          RON      RUB      RWF      WST      STD      SAR      RSD      SCR
[1,] 4.038388 73.64353 993.5404 2.530148 20378.26 3.750253 96.36945 16.45752
[2,] 4.035708 73.72729 991.5044 2.528604 20369.99 3.750280 96.31474 16.42289
[3,] 4.037638 73.74271 988.1382 2.522324 20392.76 3.750382 96.40298 16.42513
[4,] 4.054574 73.94881 994.9013 2.517404 20329.23 3.750486 96.77238 16.17678
[5,] 4.055295 73.99747 992.6871 2.527096 20391.65 3.750408 96.92855 15.72514
[6,] 4.055200 73.99470 992.6050 2.528142 20392.12 3.750400 96.92452 15.72420
          SLL      XAG      SGD      SKK      SIT      SBD      SOS      ZAR
[1,] 10230.05 0.036024 1.332223 24.68828 196.3852 7.965492 581.5898 14.03680
[2,] 10225.00 0.035889 1.332034 24.67421 196.2733 7.969700 581.5667 14.04558
[3,] 10227.48 0.035272 1.330614 24.68912 196.3918 7.979942 581.5441 14.02133
[4,] 10242.37 0.035928 1.335327 24.80184 197.2885 7.982973 581.1441 14.13427
[5,] 10250.00 0.036462 1.332250 24.80364 197.3028 7.984064 582.1876 14.12770
[6,] 10250.00 0.036467 1.332190 24.80384 197.3044 7.984064 582.2289 14.12636
          KRW      ESP      LKR      SHP      SDD     SDP      SDG      SRD
[1,] 1130.361 136.3534 196.9753 0.706900 40999.51 2266.65 409.9951 14.15400
[2,] 1129.054 136.2758 197.0221 0.706270 40847.04 2266.65 408.4704 14.15400
[3,] 1129.264 136.3581 197.0104 0.704853 40826.94 2266.65 408.2694 14.15400
[4,] 1135.601 136.9806 196.9446 0.708659 40812.16 2266.65 408.1216 14.15398
[5,] 1126.497 136.9906 196.9698 0.709360 40800.00 2266.65 408.0000 14.15400
[6,] 1126.493 136.9917 196.9724 0.709381 40800.00 2266.65 408.0000 14.15400
          SRG      SZL      SEK      CHF     SYP      TWD      TZS      THB
[1,] 14154.00 14.03680 8.327872 0.900728 512.795 27.96137 2318.664 31.38183
[2,] 14154.00 14.04558 8.317144 0.900548 512.795 27.94036 2319.020 31.41830
[3,] 14154.00 14.02133 8.298836 0.898838 512.795 27.95758 2318.991 31.44006
[4,] 14153.97 14.13427 8.340154 0.902029 512.795 28.08714 2318.873 31.45640
[5,] 14154.00 14.12770 8.329378 0.901558 512.795 27.97343 2318.409 31.35064
[6,] 14154.00 14.12636 8.329585 0.901545 512.795 27.97330 2318.407 31.34950
          TOP      TTD      TND     TRL      TRY      TMM      UGX      UAH
[1,] 2.249430 6.785717 2.714850 8384065 8.384065 17523.44 3562.015 27.46098
[2,] 2.243332 6.786620 2.714586 8392245 8.392246 17524.70 3552.262 27.42975
[3,] 2.247420 6.787789 2.719452 8340242 8.340242 17540.30 3535.741 27.46723
[4,] 2.248110 6.784912 2.723762 8362324 8.362324 17515.10 3533.656 27.56587
[5,] 2.256693 6.787036 2.719462 8447731 8.447732 17522.81 3535.256 27.59006
[6,] 2.257036 6.786424 2.718850 8447150 8.447150 17524.88 3534.842 27.58645
          UYU      AED    VUV          VEB      VND      YER      YUN     ZMK
[1,] 44.10860 3.673120 113.14 2.963429e+14 23048.51 250.0295 96.36945 5252.55
[2,] 44.17758 3.673159 113.14 2.957987e+14 23046.32 250.0085 96.31474 5252.55
[3,] 44.19156 3.673102 113.14 2.955092e+14 23042.88 250.0219 96.40298 5252.55
[4,] 44.12632 3.673106 113.14 2.937512e+14 23048.14 250.0233 96.77238 5252.55
[5,] 44.12110 3.673090 113.14 2.921017e+14 23051.52 250.0223 96.92855 5252.55
[6,] 44.12754 3.673100 113.14 2.920765e+14 23051.50 250.0225 96.92452 5252.55
       ZWD
[1,] 374.8
[2,] 374.8
[3,] 374.8
[4,] 374.8
[5,] 374.8
[6,] 374.8

Abbreviations

You can find the meanings for the abbreviations using the quantmod library:

currency_table = quantmod::oanda.currencies
Registered S3 method overwritten by 'quantmod':
  method            from
  as.zoo.data.frame zoo 
currency_table
    oanda.df.1.length.oanda.df...2....1.
USD                            US Dollar
AFN                  Afghanistan Afghani
ALL                         Albanian Lek
DZD                       Algerian Dinar
ADF                       Andorran Franc
ADP                      Andorran Peseta
AOA                       Angolan Kwanza
AON                   Angolan New Kwanza
ARS                       Argentine Peso
AMD                        Armenian Dram
AWG                        Aruban Florin
AUD                    Australian Dollar
ATS                   Austrian Schilling
AZM                     Azerbaijan Manat
AZN                 Azerbaijan New Manat
BSD                      Bahamian Dollar
BHD                       Bahraini Dinar
BDT                     Bangladeshi Taka
BBD                      Barbados Dollar
BYR                     Belarusian Ruble
BEF                        Belgian Franc
BZD                        Belize Dollar
BMD                     Bermudian Dollar
BTN                      Bhutan Ngultrum
BOB                   Bolivian Boliviano
BAM                         Bosnian Mark
BWP                        Botswana Pula
BRL                       Brazilian Real
GBP                        British Pound
BND                        Brunei Dollar
BGN                        Bulgarian Lev
BIF                        Burundi Franc
XOF                      CFA Franc BCEAO
XAF                       CFA Franc BEAC
XPF                            CFP Franc
KHR                       Cambodian Riel
CAD                      Canadian Dollar
CVE                    Cape Verde Escudo
KYD                Cayman Islands Dollar
CLP                         Chilean Peso
CNY                Chinese Yuan Renminbi
COP                       Colombian Peso
KMF                        Comoros Franc
CDF                      Congolese Franc
CRC                    Costa Rican Colon
HRK                        Croatian Kuna
CUC               Cuban Convertible Peso
CUP                           Cuban Peso
CYP                         Cyprus Pound
CZK                         Czech Koruna
DKK                         Danish Krone
DJF                       Djibouti Franc
DOP                    Dominican R. Peso
NLG                        Dutch Guilder
XEU                                  ECU
XCD                East Caribbean Dollar
ECS                        Ecuador Sucre
EGP                       Egyptian Pound
SVC                    El Salvador Colon
EEK                       Estonian Kroon
ETB                       Ethiopian Birr
EUR                                 Euro
FKP               Falkland Islands Pound
FJD                          Fiji Dollar
FIM                       Finnish Markka
FRF                         French Franc
GMD                       Gambian Dalasi
GEL                        Georgian Lari
DEM                          German Mark
GHC                        Ghanaian Cedi
GHS                    Ghanaian New Cedi
GIP                      Gibraltar Pound
XAU                           Gold (oz.)
GRD                        Greek Drachma
GTQ                   Guatemalan Quetzal
GNF                         Guinea Franc
GYD                      Guyanese Dollar
HTG                       Haitian Gourde
HNL                     Honduran Lempira
HKD                     Hong Kong Dollar
HUF                     Hungarian Forint
ISK                        Iceland Krona
INR                         Indian Rupee
IDR                    Indonesian Rupiah
IRR                         Iranian Rial
IQD                          Iraqi Dinar
IEP                           Irish Punt
ILS                   Israeli New Shekel
ITL                         Italian Lira
JMD                      Jamaican Dollar
JPY                         Japanese Yen
JOD                      Jordanian Dinar
KZT                     Kazakhstan Tenge
KES                      Kenyan Shilling
KWD                        Kuwaiti Dinar
KGS                    Kyrgyzstanian Som
LAK                              Lao Kip
LVL                         Latvian Lats
LBP                       Lebanese Pound
LSL                         Lesotho Loti
LRD                      Liberian Dollar
LYD                         Libyan Dinar
LTL                     Lithuanian Litas
LUF                     Luxembourg Franc
MOP                         Macau Pataca
MKD                     Macedonian Denar
MGA                      Malagasy Ariary
MGF                       Malagasy Franc
MWK                        Malawi Kwacha
MYR                    Malaysian Ringgit
MVR                      Maldive Rufiyaa
MTL                         Maltese Lira
MRO                  Mauritanian Ouguiya
MUR                      Mauritius Rupee
MXN                         Mexican Peso
MDL                         Moldovan Leu
MNT                     Mongolian Tugrik
MAD                      Moroccan Dirham
MZM                   Mozambique Metical
MZN               Mozambique New Metical
MMK                         Myanmar Kyat
ANG                 NL Antillian Guilder
NAD                       Namibia Dollar
NPR                       Nepalese Rupee
NZD                   New Zealand Dollar
NIO               Nicaraguan Cordoba Oro
NGN                       Nigerian Naira
KPW                     North Korean Won
NOK                     Norwegian Kroner
OMR                           Omani Rial
PKR                       Pakistan Rupee
XPD                      Palladium (oz.)
PAB                    Panamanian Balboa
PGK                Papua New Guinea Kina
PYG                     Paraguay Guarani
PEN                   Peruvian Nuevo Sol
PHP                      Philippine Peso
XPT                       Platinum (oz.)
PLN                         Polish Zloty
PTE                    Portuguese Escudo
QAR                          Qatari Rial
ROL                         Romanian Lei
RON                     Romanian New Lei
RUB                       Russian Rouble
RWF                        Rwandan Franc
WST                          Samoan Tala
STD              Sao Tome/Principe Dobra
SAR                          Saudi Riyal
RSD                        Serbian Dinar
SCR                     Seychelles Rupee
SLL                   Sierra Leone Leone
XAG                         Silver (oz.)
SGD                     Singapore Dollar
SKK                        Slovak Koruna
SIT                      Slovenian Tolar
SBD               Solomon Islands Dollar
SOS                      Somali Shilling
ZAR                   South African Rand
KRW                     South-Korean Won
ESP                       Spanish Peseta
LKR                      Sri Lanka Rupee
SHP                     St. Helena Pound
SDD                       Sudanese Dinar
SDP                   Sudanese Old Pound
SDG                       Sudanese Pound
SRD                      Suriname Dollar
SRG                     Suriname Guilder
SZL                  Swaziland Lilangeni
SEK                        Swedish Krona
CHF                          Swiss Franc
SYP                         Syrian Pound
TWD                        Taiwan Dollar
TZS                   Tanzanian Shilling
THB                            Thai Baht
TOP                        Tonga Pa'anga
TTD               Trinidad/Tobago Dollar
TND                       Tunisian Dinar
TRL                         Turkish Lira
TRY                     Turkish New Lira
TMM                   Turkmenistan Manat
UGX                      Uganda Shilling
UAH                      Ukraine Hryvnia
UYU                       Uruguayan Peso
AED               Utd. Arab Emir. Dirham
VUV                         Vanuatu Vatu
VEB                   Venezuelan Bolivar
VND                      Vietnamese Dong
YER                          Yemeni Rial
YUN                       Yugoslav Dinar
ZMK                       Zambian Kwacha
ZWD                      Zimbabwe Dollar

Processing

We are going to use these data to look at covariances of the change in exchange rates. Of course, for a given currency, the exchange rate from one day to the next tend to be similar – that is the time series will show strong autocorrelation. Here’s an example time series for the Afghanistan Afghani (AFN):

plot(df[,"AFN"],type="l", main="Exchange rates for AFN vs USD",ylab="day")

On the other hand, one might expect the changes in exchange rate from day to day to be less correlated. So I suggest analysing the changes from day to day. Also these data are positive, and it makes sense to measure changes on a multiplicative scale, so I will take the log and the look at the differences.

ldf = log(df)
ldf_diff = apply(ldf,2,diff)
plot(ldf_diff[,"AFN"], type="l", main = "change in log exchange rate by day, AFN vs USD")

And we can look at how correlated these are between currencies. Eg when the AFN goes up vs the dollar, does the Albanian Lek (ALL) also go up vs dollar? Maybe there is a hint of a positive correlation here? (One might expect a correlation as they are both being measured against the same thing, the USD… if something happens to weaken the USD then maybe both would go up….)

plot(ldf_diff[,"AFN"], ldf_diff[,"ALL"])

cor(ldf_diff[,"AFN"], ldf_diff[,"ALL"])
[1] 0.1894699

sessionInfo()
R version 3.6.0 (2019-04-26)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.6       rstudioapi_0.13  whisker_0.4      knitr_1.29      
 [5] magrittr_1.5     workflowr_1.6.2  lattice_0.20-41  R6_2.4.1        
 [9] rlang_0.4.10     TTR_0.24.2       stringr_1.4.0    xts_0.12.1      
[13] tools_3.6.0      grid_3.6.0       quantmod_0.4.18  xfun_0.16       
[17] git2r_0.27.1     htmltools_0.5.0  ellipsis_0.3.1   yaml_2.2.1      
[21] digest_0.6.27    rprojroot_1.3-2  tibble_3.0.4     lifecycle_1.0.0 
[25] crayon_1.3.4     later_1.1.0.1    vctrs_0.3.8      fs_1.5.0        
[29] promises_1.1.1   curl_4.3         glue_1.4.2       evaluate_0.14   
[33] rmarkdown_2.3    stringi_1.4.6    compiler_3.6.0   pillar_1.4.6    
[37] backports_1.1.10 httpuv_1.5.4     zoo_1.8-8        pkgconfig_2.0.3