Last updated: 2020-08-19

Checks: 6 1

Knit directory: causal-TWAS/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20191103) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version f125882. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    code/workflow/.ipynb_checkpoints/
    Ignored:    data/

Untracked files:
    Untracked:  analysis/figure/

Unstaged changes:
    Modified:   analysis/simulation-susieI-ukbchr17to22-gtex.adipose.Rmd
    Modified:   code/run_test_susieI.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/simulation-susieI-ukbchr17to22-gtex.adipose.Rmd) and HTML (docs/simulation-susieI-ukbchr17to22-gtex.adipose.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd f125882 simingz 2020-08-19 susieI
html f125882 simingz 2020-08-19 susieI
Rmd d299f60 simingz 2020-08-19 susieI
html d299f60 simingz 2020-08-19 susieI
Rmd 846fb96 simingz 2020-08-14 susieI
html 846fb96 simingz 2020-08-14 susieI
Rmd fd909a1 simingz 2020-08-14 susieI

Test susieI for ukb chr 17 to chr 22 combined. SNPs are downsampled to 1/10, eQTLs defined by FUSION-TWAS (Adipose/GTEx) lasso effect size > 0 were kept, p= 86k, n = 20k.

susieI is an iterative version of susie, learning parameters (prior weights) iteratively using the top region from mr.ash for genes only.

library(mr.ash.alpha)
library(data.table)
suppressMessages({library(plotly)})
library(tidyr)
library(plyr)
library(stringr)
library(kableExtra)
source("analysis/summarize_twas_plots.R")
simdatadir <- "~/causalTWAS/simulations/simulation_ashtest_20200721/"
outputdir <- "~/causalTWAS/simulations/simulation_susieI_20200813/"
susiedir <- "~/causalTWAS/simulations/simulation_susieI_20200813/"
tag <- '20200813-1-1'
Niter <- 10

MR.ASH pip distribution

  • Use mr.ash for gene only:
rpipf <- paste0(outputdir, tag, "-mr.ash.rPIP.txt")

a <- read.table(rpipf, header = T)
a.c <- a[a$nCausal > 0, ]
ax <- pretty(0:max(a$rPIP), n = 30)

par(mfrow=c(2,1))
h1 <- hist(a$rPIP, breaks = 100, xlab = "PIP", main = "PIP distribution-all", col = "grey"); grid()
h2 <- hist(a.c$rPIP, breaks = h1$breaks, xlab = "PIP", main = "PIP distribution-causal", col = "salmon");grid()

Version Author Date
d299f60 simingz 2020-08-19
846fb96 simingz 2020-08-14
  • MR.ash2s results for the same simulated data
rpipf <- "~/causalTWAS/simulations/simulation_ashtest_20200721/20200721-1-1-mr.ash2s.lassoes-es.rPIP.txt"

a <- read.table(rpipf, header = T)
a.c <- a[a$nCausal > 0 ,]
ax <- pretty(0:max(a$rPIP), n = 30) # Make a neat vector for the breakpoints

par(mfrow=c(2,1))
h1 <- hist(a$rPIP, breaks = 100, xlab = "PIP", main = "PIP distribution-all", col = "grey"); grid()
h2 <- hist(a.c$rPIP, breaks = h1$breaks, xlab = "PIP", main = "PIP distribution-causal", col = "salmon");grid()

Version Author Date
d299f60 simingz 2020-08-19
846fb96 simingz 2020-08-14

susieI genes

Regions: We use regional PIP of both SNP and gene from mr.ash2s > 0.3 , and also require at least one causal gene or SNP is present, also, at least one gene.

Prior change for each iteration:

load(paste0(outputdir, tag, ".susieIres.Rd"))
df <- cbind(prior.gene_rec, prior.SNP_rec)
rownames(df) <- paste("Iteration", 1:Niter)
colnames(df) <- c("Prior.gene", "Prior.SNP")
df
             Prior.gene   Prior.SNP
Iteration 1  0.00853819 0.006018864
Iteration 2  0.01049847 0.005956966
Iteration 3  0.01202068 0.005908900
Iteration 4  0.01318421 0.005872160
Iteration 5  0.01405232 0.005844749
Iteration 6  0.01469379 0.005824494
Iteration 7  0.01516465 0.005809626
Iteration 8  0.01550865 0.005798763
Iteration 9  0.01575915 0.005790854
Iteration 10 0.01594113 0.005785108

Results for each region:

regionlist <- readRDS(paste0(outputdir, tag, "_regionlist.rds"))
ng <- unlist(lapply(lapply(regionlist, '[[', "anno"), function(x) dim(x[x$type == "gene", , drop = F ])[1]))
ns <- unlist(lapply(lapply(regionlist, '[[', "anno"), function(x) dim(x[x$type == "SNP", , drop = F ])[1]))
ng.c <- unlist(lapply(lapply(regionlist, '[[', "anno"), function(x) dim(x[x$type == "gene" & x$ifcausal == 1, , drop = F])[1]))
ns.c <- unlist(lapply(lapply(regionlist, '[[', "anno"), function(x) dim(x[x$type == "SNP" & x$ifcausal == 1, , drop = F])[1]))
ngdf <- data.frame("ngene" = ng, "nsnp" = ns, "ncausalgene" = ng.c, "ncausalSNP" = ns.c)

cat("causal gene fraction:", sum(ngdf$ncausalgene)/sum(ngdf$ngene) )
causal gene fraction: 0.06355932
cat("causal snp fraction:", sum(ngdf$ncausalSNP)/sum(ngdf$ns))
causal snp fraction: 0.006288467
for (i in 1:Niter){
  resf <- paste0(outputdir, tag, ".", i, ".susieIres.Rd") 
  load(resf)
  ngdf[, paste("Prior.gene", i)] <- unlist(lapply(gene.rpiplist, "mean"))
  ngdf[, paste("Prior.SNP", i)] <- unlist(lapply(snp.rpiplist, "mean"))
}
ngdf
   ngene nsnp ncausalgene ncausalSNP Prior.gene 1  Prior.SNP 1
1      1  177           1          2 1.121460e-03 0.0056433816
2      1  131           0          1 1.399491e-02 0.0075267564
3      7  116           1          0 1.149406e-02 0.0079270825
4      4  112           0          2 1.446824e-03 0.0088768991
5      7   99           0          1 2.187797e-03 0.0099463174
6     10  154           1          1 8.959135e-02 0.0006758864
7      4   89           0          1 3.618684e-04 0.0112196913
8      1   89           0          1 1.064940e-04 0.0112347585
10     6  145           1          0 1.057093e-02 0.0064591341
11    11  155           2          1 3.212361e-03 0.0062236389
12     2  173           0          2 6.221626e-06 0.0057802749
13    12  166           2          0 6.603292e-03 0.0055467500
14     7  154           0          2 3.895577e-04 0.0064757993
18     2   97           1          0 3.556363e-02 0.0095760076
19     2  158           1          0 7.285274e-03 0.0062368953
22     1  209           0          1 4.761905e-03 0.0047619048
24     6  191           0          1 4.803413e-03 0.0050847096
25     4  178           1          0 5.987876e-03 0.0054834185
26     4  108           0          1 1.366526e-07 0.0092592542
27     2  160           0          1 1.455019e-02 0.0060681226
28     4  216           0          1 4.545455e-03 0.0045454545
29     4  100           0          1 2.693962e-03 0.0098922415
30     3  274           0          1 3.491355e-03 0.0036114085
31     4  205           1          0 4.784689e-03 0.0047846890
32     7  192           1          0 1.149907e-02 0.0047890964
33     2  125           0          2 1.612216e-02 0.0077420454
34     9  133           0          1 7.297093e-08 0.0075187921
35     8  217           0          1 4.444444e-03 0.0044444444
36     6  236           0          1 9.325782e-06 0.0042370510
37    11  181           0          1 5.208333e-03 0.0052083333
39     1   90           0          1 7.830050e-05 0.0111102411
43     1  139           0          2 2.392592e-03 0.0071770317
44     3  159           0          1 1.331606e-03 0.0062641835
46     4  137           0          1 6.858883e-12 0.0072992701
47     4  182           1          0 7.264653e-03 0.0053348428
53     5  169           0          3 8.244458e-04 0.0058927679
54     3  119           0          1 8.196721e-03 0.0081967213
55     6  177           0          1 1.818031e-03 0.0055880894
56     2  138           0          1 5.244884e-03 0.0071703640
57    10  231           0          2 4.586726e-03 0.0041304448
58     5  215           0          1 4.545455e-03 0.0045454545
59    14  163           0          1 7.228010e-03 0.0055141587
60     4  161           0          1 6.060606e-03 0.0060606061
61     4  192           0          1 1.626941e-03 0.0051744387
62     3  123           0          2 7.342575e-04 0.0081121726
63     3  193           0          1 3.341177e-03 0.0051294118
64    12  146           1          0 7.098813e-03 0.0062658510
   Prior.gene 2  Prior.SNP 2 Prior.gene 3  Prior.SNP 3 Prior.gene 4
1  1.590171e-03 0.0056407335 1.974861e-03 0.0056385601 2.278944e-03
2  1.973815e-02 0.0074829149 2.440623e-02 0.0074472807 2.806747e-02
3  1.577395e-02 0.0076688135 1.908627e-02 0.0074689318 2.158642e-02
4  2.049515e-03 0.0088553745 2.543290e-03 0.0088377397 2.933042e-03
5  3.085123e-03 0.0098828701 3.814244e-03 0.0098313161 4.385959e-03
6  9.243588e-02 0.0004911768 9.382265e-02 0.0004011269 9.460502e-02
7  5.131257e-04 0.0112128932 6.372756e-04 0.0112073135 7.354159e-04
8  1.510661e-04 0.0112342577 1.876762e-04 0.0112338463 2.166329e-04
10 1.460856e-02 0.0062920597 1.777234e-02 0.0061611446 2.018323e-02
11 4.510406e-03 0.0061315196 5.556875e-03 0.0060572540 6.372283e-03
12 8.825798e-06 0.0057802448 1.096485e-05 0.0057802201 1.265679e-05
13 9.087448e-03 0.0053671724 1.101812e-02 0.0052276057 1.247967e-02
14 5.520417e-04 0.0064684137 6.852536e-04 0.0064623586 7.904603e-04
18 4.903323e-02 0.0092982839 5.954252e-02 0.0090815975 6.752394e-02
19 1.027432e-02 0.0061990592 1.270350e-02 0.0061683101 1.460854e-02
22 6.741666e-03 0.0047524322 8.361958e-03 0.0047446796 9.639830e-03
24 6.779515e-03 0.0050226330 8.743109e-03 0.0049609495 1.001120e-02
25 8.410108e-03 0.0054289863 1.036412e-02 0.0053850760 1.188750e-02
26 1.938515e-07 0.0092592521 2.408346e-07 0.0092592503 2.779971e-07
27 2.040942e-02 0.0059948822 2.512418e-02 0.0059359477 2.879231e-02
28 6.399352e-03 0.0045111231 7.901322e-03 0.0044833089 9.076289e-03
29 3.807033e-03 0.0098477187 4.714982e-03 0.0098114007 5.429140e-03
30 4.931460e-03 0.0035956410 6.105134e-03 0.0035827905 7.027649e-03
31 6.733483e-03 0.0047466637 8.311200e-03 0.0047158790 9.544715e-03
32 1.578110e-02 0.0046329808 1.909515e-02 0.0045121558 2.159664e-02
33 2.257433e-02 0.0076388107 2.775031e-02 0.0075559950 3.176772e-02
34 1.035145e-07 0.0075187900 1.286029e-07 0.0075187883 1.484473e-07
35 6.212308e-03 0.0043792697 7.626106e-03 0.0043271482 9.126148e-03
36 1.322913e-05 0.0042369518 1.643527e-05 0.0042368703 1.897120e-05
37 7.215365e-03 0.0050863590 8.794946e-03 0.0049903624 1.000275e-02
39 1.110724e-04 0.0111098770 1.379902e-04 0.0111095779 1.592808e-04
43 3.391669e-03 0.0071698441 4.211256e-03 0.0071639478 4.858858e-03
44 1.886459e-03 0.0062537146 2.341109e-03 0.0062451363 2.700021e-03
46 9.729817e-12 0.0072992701 1.208800e-11 0.0072992701 1.395327e-11
47 1.022575e-02 0.0052697638 1.262044e-02 0.0052171332 1.449008e-02
53 1.168143e-03 0.0058825993 1.449844e-03 0.0058742650 1.672273e-03
54 1.150918e-02 0.0081132140 1.417995e-02 0.0080458835 1.626128e-02
55 2.570981e-03 0.0055625656 3.185955e-03 0.0055417190 3.670166e-03
56 7.413731e-03 0.0071389314 9.183671e-03 0.0071132801 1.057633e-02
57 6.384775e-03 0.0040526071 7.812061e-03 0.0039908199 8.910723e-03
58 6.387291e-03 0.0045026211 7.874407e-03 0.0044680370 9.034596e-03
59 9.842294e-03 0.0052896190 1.183736e-02 0.0051182632 1.332712e-02
60 8.511041e-03 0.0059997257 1.048730e-02 0.0059506261 1.202771e-02
61 2.305777e-03 0.0051602963 2.862438e-03 0.0051486992 3.302152e-03
62 1.040897e-03 0.0081046936 1.292461e-03 0.0080985579 1.491246e-03
63 4.729615e-03 0.0051078298 5.865695e-03 0.0050901705 6.761535e-03
64 9.723897e-03 0.0060500906 1.174876e-02 0.0058836639 1.327322e-02
    Prior.SNP 4 Prior.gene 5  Prior.SNP 5 Prior.gene 6  Prior.SNP 6
1  0.0056368421 2.514613e-03 0.0056355107 2.692307e-03 0.0056345067
2  0.0074193323 3.088770e-02 0.0073978038 3.300426e-02 0.0073816469
3  0.0073180611 2.345660e-02 0.0072052054 2.482953e-02 0.0071223561
4  0.0088238199 3.234767e-03 0.0088130440 3.462071e-03 0.0088049260
5  0.0097908918 4.826263e-03 0.0097597592 5.156655e-03 0.0097363981
6  0.0003503237 9.508746e-02 0.0003189958 9.539789e-02 0.0002988382
7  0.0112029027 8.114787e-04 0.0111994841 8.688311e-04 0.0111969065
8  0.0112335210 2.390856e-04 0.0112332687 2.560211e-04 0.0112330784
10 0.0060613837 2.199966e-02 0.0059862209 2.334030e-02 0.0059307464
11 0.0059993864 6.997198e-03 0.0059550375 7.464373e-03 0.0059218832
12 0.0057802005 1.396872e-05 0.0057801853 1.495829e-05 0.0057801739
13 0.0051219513 1.357519e-02 0.0050427573 1.438057e-02 0.0049845368
14 0.0064575765 8.719408e-04 0.0064538728 9.333443e-04 0.0064510818
18 0.0089170322 7.352182e-02 0.0087933645 7.793997e-02 0.0087022687
19 0.0061441957 1.607586e-02 0.0061256220 1.717700e-02 0.0061116836
22 0.0047385654 1.062844e-02 0.0047338352 1.137283e-02 0.0047302736
24 0.0049211143 1.098055e-02 0.0048906634 1.170382e-02 0.0048679428
25 0.0053508428 1.305549e-02 0.0053245956 1.392896e-02 0.0053049671
26 0.0092592490 3.068132e-07 0.0092592479 3.285489e-07 0.0092592471
27 0.0058900961 3.160013e-02 0.0058549984 3.369727e-02 0.0058287842
28 0.0044615502 9.979546e-03 0.0044448232 1.065639e-02 0.0044322890
29 0.0097828344 5.980485e-03 0.0097607806 6.394966e-03 0.0097442013
30 0.0035726900 7.739456e-03 0.0035648965 8.274345e-03 0.0035590400
31 0.0046918104 1.049256e-02 0.0046733159 1.120258e-02 0.0046594619
32 0.0044209558 2.346784e-02 0.0043527350 2.484153e-02 0.0043026527
33 0.0074917165 3.483736e-02 0.0074426022 3.712698e-02 0.0074059684
34 0.0075187869 1.638347e-07 0.0075187859 1.754413e-07 0.0075187851
35 0.0042718471 1.000810e-02 0.0042393328 1.066320e-02 0.0042151814
36 0.0042368058 2.093756e-05 0.0042367558 2.242074e-05 0.0042367181
37 0.0049169602 1.091510e-02 0.0048615132 1.158978e-02 0.0048205106
39 0.0111093413 1.757893e-04 0.0111091579 1.882412e-04 0.0111090195
43 0.0071592888 5.360605e-03 0.0071556791 5.738831e-03 0.0071529581
44 0.0062383644 2.977897e-03 0.0062331214 3.187249e-03 0.0062291714
46 0.0072992701 1.539961e-11 0.0072992701 1.649057e-11 0.0072992701
47 0.0051760423 1.592473e-02 0.0051445114 1.699810e-02 0.0051209208
53 0.0058676842 1.844509e-03 0.0058625885 1.974289e-03 0.0058587489
54 0.0079934131 1.785657e-02 0.0079531958 1.904929e-02 0.0079231271
55 0.0055253051 4.044287e-03 0.0055126231 4.325710e-03 0.0055030833
56 0.0070930966 1.165179e-02 0.0070775103 1.246045e-02 0.0070657906
57 0.0039432587 9.744873e-03 0.0039071484 1.036408e-02 0.0038803429
58 0.0044410559 9.924616e-03 0.0044203578 1.059048e-02 0.0044048726
59 0.0049903083 1.443252e-02 0.0048953666 1.523914e-02 0.0048260861
60 0.0059123550 1.320859e-02 0.0058830165 1.409158e-02 0.0058610787
61 0.0051395385 3.642754e-03 0.0051324426 3.899461e-03 0.0051270946
62 0.0080937094 1.645266e-03 0.0080899529 1.761373e-03 0.0080871210
63 0.0050762456 7.454504e-03 0.0050654740 7.976242e-03 0.0050573641
64 0.0057583658 1.441136e-02 0.0056648195 1.524570e-02 0.0055962436
   Prior.gene 7  Prior.SNP 7 Prior.gene 8  Prior.SNP 8 Prior.gene 9
1  2.824646e-03 0.0056337591 2.922352e-03 0.0056332071 2.994041e-03
2  3.457510e-02 0.0073696557 3.573186e-02 0.0073608255 3.657898e-02
3  2.583198e-02 0.0070618630 2.656140e-02 0.0070178466 2.709091e-02
4  3.631250e-03 0.0087988839 3.756095e-03 0.0087944252 3.847665e-03
5  5.401833e-03 0.0097190623 5.582366e-03 0.0097062974 5.714567e-03
6  9.560480e-02 0.0002854026 9.574604e-02 0.0002762315 9.584404e-02
7  9.115459e-04 0.0111949867 9.430827e-04 0.0111935693 9.662223e-04
8  2.686375e-04 0.0112329367 2.779541e-04 0.0112328320 2.847909e-04
10 2.432302e-02 0.0058900817 2.504014e-02 0.0058604081 2.556181e-02
11 7.810089e-03 0.0058973485 8.064127e-03 0.0058793200 8.249873e-03
12 1.569550e-05 0.0057801654 1.623991e-05 0.0057801591 1.663941e-05
13 1.496922e-02 0.0049419843 1.539783e-02 0.0049110004 1.570913e-02
14 9.790571e-04 0.0064490039 1.012797e-03 0.0064474703 1.037548e-03
18 8.117393e-02 0.0086355890 8.353130e-02 0.0085869834 8.524487e-02
19 1.799418e-02 0.0061013395 1.859593e-02 0.0060937224 1.903660e-02
22 1.192665e-02 0.0047276237 1.233524e-02 0.0047256687 1.263485e-02
24 1.223829e-02 0.0048511532 1.263061e-02 0.0048388289 1.291725e-02
25 1.457551e-02 0.0052904379 1.505070e-02 0.0052797596 1.539819e-02
26 3.447414e-07 0.0092592465 3.566990e-07 0.0092592460 3.654740e-07
27 3.524811e-02 0.0058093986 3.638712e-02 0.0057951610 3.721961e-02
28 1.115815e-02 0.0044229971 1.152734e-02 0.0044161604 1.179753e-02
29 6.702972e-03 0.0097318811 6.929999e-03 0.0097228000 7.096373e-03
30 8.671702e-03 0.0035546894 8.964521e-03 0.0035514833 9.179073e-03
31 1.172880e-02 0.0046491942 1.211590e-02 0.0046416410 1.239918e-02
32 2.584454e-02 0.0042660845 2.657436e-02 0.0042394765 2.710417e-02
33 3.881848e-02 0.0073789043 4.005989e-02 0.0073590418 4.096675e-02
34 1.840879e-07 0.0075187845 1.904731e-07 0.0075187841 1.951589e-07
35 1.114598e-02 0.0041973832 1.149972e-02 0.0041843423 1.175783e-02
36 2.352567e-05 0.0042366900 2.434161e-05 0.0042366693 2.494038e-05
37 1.208505e-02 0.0047904112 1.244684e-02 0.0047684242 1.271023e-02
39 1.975174e-04 0.0111089165 2.043675e-04 0.0111088404 2.093943e-04
43 6.020469e-03 0.0071509319 6.228376e-03 0.0071494361 6.380908e-03
44 3.343074e-03 0.0062262313 3.458069e-03 0.0062240616 3.542417e-03
46 1.730331e-11 0.0072992701 1.790348e-11 0.0072992701 1.834392e-11
47 1.779283e-02 0.0051034543 1.837700e-02 0.0050906153 1.880423e-02
53 2.070896e-03 0.0058558907 2.142194e-03 0.0058537812 2.194494e-03
54 1.993200e-02 0.0079008740 2.058067e-02 0.0078845210 2.105498e-02
55 4.534934e-03 0.0054959909 4.689203e-03 0.0054907615 4.802286e-03
56 1.306147e-02 0.0070570802 1.350452e-02 0.0070506591 1.382924e-02
57 1.081991e-02 0.0038606100 1.115357e-02 0.0038461657 1.139685e-02
58 1.108351e-02 0.0043934069 1.144594e-02 0.0043849781 1.171103e-02
59 1.582551e-02 0.0047757229 1.625080e-02 0.0047391948 1.655882e-02
60 1.474513e-02 0.0058448416 1.522542e-02 0.0058329088 1.557664e-02
61 4.090589e-03 0.0051231127 4.231667e-03 0.0051201736 4.335163e-03
62 1.847831e-03 0.0080850123 1.911656e-03 0.0080834555 1.958482e-03
63 8.364390e-03 0.0050513307 8.650731e-03 0.0050468798 8.860702e-03
64 1.585427e-02 0.0055462247 1.629673e-02 0.0055098575 1.661776e-02
    Prior.SNP 9 Prior.gene 10 Prior.SNP 10
1  0.0056328020  3.046407e-03 0.0056325062
2  0.0073543589  3.719691e-02 0.0073496419
3  0.0069858931  2.747471e-02 0.0069627331
4  0.0087911548  3.914535e-03 0.0087887666
5  0.0096969498  5.810995e-03 0.0096901317
6  0.0002698676  9.591283e-02 0.0002654009
7  0.0111925293  9.831248e-04 0.0111917697
8  0.0112327552  2.897855e-04 0.0112326990
10 0.0058388216  2.594050e-02 0.0058231518
11 0.0058661380  8.385207e-03 0.0058565337
12 0.0057801545  1.693126e-05 0.0057801511
13 0.0048884966  1.593484e-02 0.0048721800
14 0.0064463452  1.055624e-03 0.0064455236
18 0.0085516522  8.648805e-02 0.0085260196
19 0.0060881443  1.935804e-02 0.0060840755
22 0.0047242351  1.285362e-02 0.0047231884
24 0.0048298246  1.312598e-02 0.0048232677
25 0.0052719507  1.565141e-02 0.0052662605
26 0.0092592457  3.718844e-07 0.0092592455
27 0.0057847548  3.782600e-02 0.0057771750
28 0.0044111568  1.199454e-02 0.0044075086
29 0.0097161451  7.217793e-03 0.0097112883
30 0.0035491342  9.335635e-03 0.0035474200
31 0.0046361137  1.260569e-02 0.0046320841
32 0.0042201605  2.748818e-02 0.0042061602
33 0.0073445319  4.162706e-02 0.0073339671
34 0.0075187838  1.985820e-07 0.0075187836
35 0.0041748265  1.194562e-02 0.0041679034
36 0.0042366541  2.537780e-05 0.0042366429
37 0.0047524172  1.290153e-02 0.0047407912
39 0.0111087845  2.130666e-04 0.0111087437
43 0.0071483388  6.492317e-03 0.0071475373
44 0.0062224701  3.604014e-03 0.0062213079
46 0.0072992701  1.866567e-11 0.0072992701
47 0.0050812256  1.911556e-02 0.0050743833
53 0.0058522339  2.232689e-03 0.0058511039
54 0.0078725635  2.140058e-02 0.0078638509
55 0.0054869282  4.884829e-03 0.0054841301
56 0.0070459531  1.406623e-02 0.0070425184
57 0.0038356340  1.157374e-02 0.0038279765
58 0.0043788132  1.190422e-02 0.0043743205
59 0.0047127393  1.678170e-02 0.0046935967
60 0.0058241829  1.583255e-02 0.0058178248
61 0.0051180174  4.410752e-03 0.0051164427
62 0.0080823134  1.992684e-03 0.0080814792
63 0.0050436160  9.014011e-03 0.0050412330
64 0.0054834715  1.685035e-02 0.0054643546

susieI shuffle genes

Shuffle genes to different regions.

Prior change for each iteration:

tag <- '20200813-1-1-shuffleg'
load(paste0(outputdir, tag, ".susieIres.Rd"))
df <- cbind(prior.gene_rec, prior.SNP_rec)
rownames(df) <- paste("Iteration", 1:Niter)
colnames(df) <- c("Prior.gene", "Prior.SNP")
df
             Prior.gene   Prior.SNP
Iteration 1  0.01183381 0.005914801
Iteration 2  0.01695869 0.005752977
Iteration 3  0.02082324 0.005630949
Iteration 4  0.02350238 0.005546352
Iteration 5  0.02527726 0.005490309
Iteration 6  0.02642318 0.005454125
Iteration 7  0.02715195 0.005431113
Iteration 8  0.02761127 0.005416610
Iteration 9  0.02789918 0.005407519
Iteration 10 0.02807905 0.005401839

Results for each region:

regionlist <- readRDS(paste0(outputdir, tag, "_regionlist.rds"))
ng <- unlist(lapply(lapply(regionlist, '[[', "anno"), function(x) dim(x[x$type == "gene", , drop = F ])[1]))
ns <- unlist(lapply(lapply(regionlist, '[[', "anno"), function(x) dim(x[x$type == "SNP", , drop = F ])[1]))
ng.c <- unlist(lapply(lapply(regionlist, '[[', "anno"), function(x) dim(x[x$type == "gene" & x$ifcausal == 1, , drop = F])[1]))
ns.c <- unlist(lapply(lapply(regionlist, '[[', "anno"), function(x) dim(x[x$type == "SNP" & x$ifcausal == 1, , drop = F])[1]))
ngdf <- data.frame("ngene" = ng, "nsnp" = ns, "ncausalgene" = ng.c, "ncausalSNP" = ns.c)

cat("causal gene fraction:", sum(ngdf$ncausalgene)/sum(ngdf$ngene) )
causal gene fraction: 0.06355932
cat("causal snp fraction:", sum(ngdf$ncausalSNP)/sum(ngdf$ns))
causal snp fraction: 0.006288467
for (i in 1:Niter){
  resf <- paste0(outputdir, tag, ".", i, ".susieIres.Rd") 
  load(resf)
  ngdf[, paste("Prior.gene", i)] <- unlist(lapply(gene.rpiplist, "mean"))
  ngdf[, paste("Prior.SNP", i)] <- unlist(lapply(snp.rpiplist, "mean"))
}
ngdf
   ngene nsnp ncausalgene ncausalSNP Prior.gene 1 Prior.SNP 1 Prior.gene 2
1      2  177           1          2 1.891026e-05 0.005649504 3.783279e-05
2      5  131           0          1 2.605477e-03 0.007534142 5.169126e-03
3      4  116           1          0 2.095724e-03 0.008548423 4.175079e-03
4      3  112           0          2 1.257645e-03 0.008894885 2.511193e-03
5      1   99           0          1 7.138795e-04 0.010093799 1.427526e-03
6      6  154           0          1 4.163848e-07 0.006493490 8.330648e-07
7      4   89           1          1 2.711293e-04 0.011223769 5.420712e-04
8      1   89           0          1 1.150749e-04 0.011234662 2.302184e-04
10     3  145           0          0 2.246657e-03 0.006850069 4.476467e-03
11     9  155           0          1 3.115190e-02 0.004642793 4.984253e-02
12     3  173           0          2 1.724765e-05 0.005780048 3.450646e-05
13     8  166           0          0 5.296697e-03 0.005768834 1.018284e-02
14     4  154           0          2 2.374625e-06 0.006493445 4.750917e-06
18     2   97           0          0 1.114855e-03 0.010286292 2.226895e-03
19     2  158           0          0 2.032025e-03 0.006303392 4.056005e-03
22     1  209           0          1 4.761905e-03 0.004761905 9.482014e-03
24     4  191           1          1 6.915215e-03 0.005090781 1.375330e-02
25    11  178           2          0 5.117038e-03 0.005301756 9.715299e-03
26     4  108           0          1 1.804402e-07 0.009259253 3.610087e-07
27     7  160           0          1 8.837412e-02 0.002383632 1.106416e-01
28     4  216           0          1 4.580140e-03 0.004544812 1.041281e-02
29    12  100           1          1 1.396670e-03 0.009832400 2.762669e-03
30     1  274           0          1 8.912668e-03 0.003617107 1.769524e-02
31     4  205           0          0 4.784689e-03 0.004784689 9.392887e-03
32     4  192           0          0 1.725594e-03 0.005172383 3.434053e-03
33     2  125           0          2 1.612216e-02 0.007742045 3.127461e-02
34    10  133           1          1 5.237902e-03 0.007124970 9.960700e-03
35     6  217           0          1 4.484305e-03 0.004484305 8.736569e-03
36     6  236           1          1 7.692980e-05 0.004235332 1.538631e-04
37     1  181           1          1 9.470459e-01 0.000292564 9.729029e-01
39     1   90           0          1 1.020257e-05 0.011110998 2.041231e-05
43    12  139           2          2 2.915523e-03 0.006942545 5.662184e-03
44     7  159           0          1 2.327776e-03 0.006186827 4.588031e-03
46     4  137           0          1 7.516235e-12 0.007299270 1.503782e-11
47    14  182           0          0 8.471707e-03 0.004842836 1.577998e-02
53     3  169           0          3 3.533457e-03 0.005854436 7.007733e-03
54     7  119           1          1 9.502767e-03 0.007844375 1.796294e-02
55     5  177           0          1 2.551812e-03 0.005577632 5.053440e-03
56     2  138           1          1 8.133078e-03 0.007128506 1.603686e-02
57     7  231           1          2 2.015257e-02 0.003718320 3.591972e-02
58     4  215           0          1 4.566210e-03 0.004566210 8.971687e-03
59     6  163           0          1 2.426077e-03 0.006045666 4.814689e-03
60     2  161           0          1 2.698067e-03 0.006177664 5.376515e-03
61    10  192           0          1 5.509788e-03 0.004921365 1.046471e-02
62     3  123           0          2 5.992823e-04 0.008115465 1.197522e-03
63     4  193           0          1 3.213477e-03 0.005114747 6.390337e-03
64    11  146           0          0 6.211912e-03 0.006381294 1.165127e-02
    Prior.SNP 2 Prior.gene 3  Prior.SNP 3 Prior.gene 4  Prior.SNP 4
1  0.0056492900 5.574048e-05 0.0056490877 6.992417e-05 5.648927e-03
2  0.0074362929 7.556183e-03 0.0073451839 9.420461e-03 7.274028e-03
3  0.0084767214 6.126882e-03 0.0084094179 7.661918e-03 8.356486e-03
4  0.0088613073 3.693021e-03 0.0088296512 4.626006e-03 8.804661e-03
5  0.0100865906 2.102259e-03 0.0100797752 2.636236e-03 1.007438e-02
6  0.0064934740 1.227421e-06 0.0064934587 1.539785e-06 6.493447e-03
7  0.0112115923 7.981483e-04 0.0112000832 1.000743e-03 1.119098e-02
8  0.0112333683 3.391812e-04 0.0112321440 4.254808e-04 1.123117e-02
10 0.0068039352 6.570046e-03 0.0067606197 8.216904e-03 6.726547e-03
11 0.0035575304 6.113702e-02 0.0029017212 6.754790e-02 2.529477e-03
12 0.0057797484 5.083961e-05 0.0057794652 6.377618e-05 5.779241e-03
13 0.0055333573 1.446625e-02 0.0053269279 1.764627e-02 5.173674e-03
14 0.0064933831 6.999883e-06 0.0064933247 8.781245e-06 6.493278e-03
18 0.0102633630 3.276048e-03 0.0102417310 4.104792e-03 1.022464e-02
19 0.0062777721 5.962880e-03 0.0062536344 7.467348e-03 6.234591e-03
22 0.0047393205 1.390820e-02 0.0047181426 1.738614e-02 4.701502e-03
24 0.0049475749 2.002025e-02 0.0048163298 2.481594e-02 4.715896e-03
25 0.0050175939 1.365096e-02 0.0047743789 1.651591e-02 4.597332e-03
26 0.0092592459 5.319034e-07 0.0092592396 6.672668e-07 9.259235e-03
27 0.0014094295 1.196544e-01 0.0010151178 1.238669e-01 8.308215e-04
28 0.0044367998 1.630170e-02 0.0043277462 2.113047e-02 4.238325e-03
29 0.0096684797 4.027235e-03 0.0095167318 5.009942e-03 9.398807e-03
30 0.0035850539 2.588343e-02 0.0035551700 3.228486e-02 3.531807e-03
31 0.0046947729 1.359747e-02 0.0046127323 1.682499e-02 4.549756e-03
32 0.0051367906 5.034307e-03 0.0051034519 6.290485e-03 5.077282e-03
33 0.0074996062 4.478833e-02 0.0072833867 5.496529e-02 7.120555e-03
34 0.0067698722 1.401870e-02 0.0064647597 1.698362e-02 6.241833e-03
35 0.0043667308 1.256062e-02 0.0042609968 1.546063e-02 4.180812e-03
36 0.0042333764 2.266276e-04 0.0042315264 2.842309e-04 4.230062e-03
37 0.0001497077 9.814677e-01 0.0001023884 9.851785e-01 8.188692e-05
39 0.0111108843 3.007498e-05 0.0111107769 3.772859e-05 1.111069e-02
43 0.0067054230 8.116482e-03 0.0064935411 9.967310e-03 6.333757e-03
44 0.0060873194 6.666070e-03 0.0059958334 8.271435e-03 5.925157e-03
46 0.0072992701 2.215645e-11 0.0072992701 2.779502e-11 7.299270e-03
47 0.0042806611 2.147816e-02 0.0038423393 2.528475e-02 3.549525e-03
53 0.0057927621 1.024036e-02 0.0057353783 1.276337e-02 5.690591e-03
54 0.0073467177 2.514138e-02 0.0069244567 3.032838e-02 6.619339e-03
55 0.0055069650 7.374428e-03 0.0054414003 9.181464e-03 5.390354e-03
56 0.0070139586 2.330899e-02 0.0069085653 2.893050e-02 6.827094e-03
57 0.0032405278 4.772986e-02 0.0028826449 5.545616e-02 2.648515e-03
58 0.0044842477 1.299791e-02 0.0044093412 1.609281e-02 4.351762e-03
59 0.0059577415 7.040301e-03 0.0058758172 8.779657e-03 5.811792e-03
60 0.0061443911 7.891838e-03 0.0061131449 9.870775e-03 6.088562e-03
61 0.0046632965 1.471046e-02 0.0044421635 1.780485e-02 4.280997e-03
62 0.0081008734 1.762364e-03 0.0080870968 2.208841e-03 8.076207e-03
63 0.0050489049 9.362637e-03 0.0049873029 1.169419e-02 4.938981e-03
64 0.0059714800 1.620422e-02 0.0056284489 1.946130e-02 5.383052e-03
   Prior.gene 5  Prior.SNP 5 Prior.gene 6  Prior.SNP 6 Prior.gene 7
1  8.012310e-05 5.648812e-03 8.705256e-05 0.0056487339 9.160202e-05
2  1.074685e-02 7.223403e-03 1.164137e-02 0.0071892606 1.222576e-02
3  8.759840e-03 8.318626e-03 9.503034e-03 0.0082929988 9.989760e-03
4  5.295208e-03 8.786736e-03 5.749090e-03 0.0087745779 6.046733e-03
5  3.019957e-03 1.007051e-02 3.280554e-03 0.0100678732 3.451595e-03
6  1.764402e-06 6.493438e-03 1.917017e-06 0.0064934318 2.017217e-06
7  1.146295e-03 1.118444e-02 1.245128e-03 0.0111799943 1.309989e-03
8  4.875333e-04 1.123048e-02 5.296928e-04 0.0112300035 5.573716e-04
10 9.394954e-03 6.702173e-03 1.019245e-02 0.0066856735 1.071476e-02
11 7.123846e-02 2.315186e-03 7.341205e-02 0.0021889777 7.471582e-02
12 7.307833e-05 5.779080e-03 7.939849e-05 0.0057789700 8.354791e-05
13 1.982582e-02 5.068635e-03 2.125849e-02 0.0049995907 2.217873e-02
14 1.006220e-05 6.493245e-03 1.093253e-05 0.0064932225 1.150395e-05
18 4.699494e-03 1.021238e-02 5.102974e-03 0.0102040624 5.367620e-03
19 8.545967e-03 6.220937e-03 9.277302e-03 0.0062116797 9.756787e-03
22 1.987197e-02 4.689608e-03 2.155380e-02 0.0046815608 2.265488e-02
24 2.816818e-02 4.645692e-03 3.039951e-02 0.0045989632 3.184413e-02
25 1.845182e-02 4.477696e-03 1.971221e-02 0.0043998073 2.051674e-02
26 7.646051e-07 9.259231e-03 8.307417e-07 0.0092592285 8.741636e-07
27 1.260606e-01 7.348504e-04 1.272831e-01 0.0006813642 1.279935e-01
28 2.463901e-02 4.173352e-03 2.702548e-02 0.0041291577 2.858982e-02
29 5.706492e-03 9.315221e-03 6.175026e-03 0.0092589969 6.480582e-03
30 3.684253e-02 3.515173e-03 3.991770e-02 0.0035039500 4.192729e-02
31 1.909192e-02 4.505523e-03 2.060721e-02 0.0044759569 2.159130e-02
32 7.187647e-03 5.058591e-03 7.794317e-03 0.0050459517 8.191353e-03
33 6.201346e-02 7.007785e-03 6.667941e-02 0.0069331294 6.969046e-02
34 1.899296e-02 6.090755e-03 2.030387e-02 0.0059921904 2.114183e-02
35 1.747944e-02 4.124992e-03 1.882064e-02 0.0040879085 1.968817e-02
36 3.256350e-04 4.229009e-03 3.537585e-04 0.0042282943 3.722193e-04
37 9.870440e-01 7.158036e-05 9.880646e-01 0.0000659412 9.886516e-01
39 4.323218e-05 1.111063e-02 4.697158e-05 0.0111105892 4.942668e-05
43 1.125024e-02 6.223001e-03 1.209999e-02 0.0061496414 1.264852e-02
44 9.404322e-03 5.875281e-03 1.016402e-02 0.0058418354 1.065846e-02
46 3.184966e-11 7.299270e-03 3.460458e-11 0.0072992701 3.641333e-11
47 2.770083e-02 3.363672e-03 2.920934e-02 0.0032476333 3.014662e-02
53 1.455750e-02 5.658743e-03 1.576704e-02 0.0056372715 1.655702e-02
54 3.381399e-02 6.414303e-03 3.607456e-02 0.0062813287 3.751381e-02
55 1.046408e-02 5.354122e-03 1.132766e-02 0.0053297272 1.189120e-02
56 3.289931e-02 6.769575e-03 3.556157e-02 0.0067309918 3.729458e-02
57 6.030388e-02 2.501614e-03 6.331052e-02 0.0024105038 6.517126e-02
58 1.826882e-02 4.311278e-03 1.972435e-02 0.0042841981 2.067008e-02
59 1.001785e-02 5.766214e-03 1.085325e-02 0.0057354633 1.139917e-02
60 1.128654e-02 6.070975e-03 1.224502e-02 0.0060590680 1.287281e-02
61 1.989790e-02 4.171984e-03 2.126158e-02 0.0041009595 2.213247e-02
62 2.529391e-03 8.068389e-03 2.746948e-03 0.0080630826 2.889680e-03
63 1.335879e-02 4.904481e-03 1.448423e-02 0.0048811559 1.522074e-02
64 2.163572e-02 5.219226e-03 2.304016e-02 0.0051134128 2.393207e-02
    Prior.SNP 7 Prior.gene 8  Prior.SNP 8 Prior.gene 9  Prior.SNP 9
1  5.648682e-03 9.452683e-05 0.0056486494 9.638298e-05 5.648628e-03
2  7.166956e-03 1.260026e-02 0.0071526620 1.283743e-02 7.143610e-03
3  8.276215e-03 1.030217e-02 0.0082654424 1.050023e-02 8.258613e-03
4  8.766605e-03 6.237941e-03 0.0087614837 6.359226e-03 8.758235e-03
5  1.006615e-02 3.561535e-03 0.0100650350 3.631297e-03 1.006433e-02
6  6.493428e-03 2.081636e-06 0.0064934254 2.122518e-06 6.493424e-03
7  1.117708e-02 1.351676e-03 0.0111752056 1.378128e-03 1.117402e-02
8  1.122969e-02 5.751659e-04 0.0112294925 5.864585e-04 1.122937e-02
10 6.674867e-03 1.105002e-02 0.0066679306 1.126257e-02 6.663533e-03
11 2.113275e-03 7.550782e-02 0.0020672878 7.599295e-02 2.039119e-03
12 5.778898e-03 8.621555e-05 0.0057788518 8.790848e-05 5.778822e-03
13 4.955242e-03 2.276205e-02 0.0049271302 2.312892e-02 4.909450e-03
14 6.493208e-03 1.187132e-05 0.0064931981 1.210446e-05 6.493192e-03
18 1.019861e-02 5.537653e-03 0.0101950999 5.645516e-03 1.019288e-02
19 6.205610e-03 1.006477e-02 0.0062017118 1.026011e-02 6.199239e-03
22 4.676292e-03 2.336145e-02 0.0046729117 2.380933e-02 4.670769e-03
24 4.568709e-03 3.276438e-02 0.0045494370 3.334497e-02 4.537278e-03
25 4.350089e-03 2.102468e-02 0.0043186997 2.134333e-02 4.299007e-03
26 9.259227e-03 9.020796e-07 0.0092592258 9.197959e-07 9.259225e-03
27 6.502862e-04 1.284169e-01 0.0006317599 1.286734e-01 6.205401e-04
28 4.100188e-03 2.959362e-02 0.0040815997 3.022966e-02 4.069821e-03
29 9.222330e-03 6.676169e-03 0.0091988597 6.799949e-03 9.184006e-03
30 3.496616e-03 4.321533e-02 0.0034919149 4.403116e-02 3.488937e-03
31 4.456755e-03 2.221953e-02 0.0044444970 2.261643e-02 4.436753e-03
32 5.037680e-03 8.446077e-03 0.0050323734 8.607517e-03 5.029010e-03
33 6.884953e-03 7.160480e-02 0.0068543232 7.281109e-02 6.835023e-03
34 5.929186e-03 2.167135e-02 0.0058893722 2.200375e-02 5.864380e-03
35 4.063922e-03 2.024055e-02 0.0040486484 2.058895e-02 4.039015e-03
36 4.227825e-03 3.840862e-04 0.0042275232 3.916167e-04 4.227332e-03
37 6.269822e-05 9.889994e-01 0.0000607766 9.892093e-01 5.961701e-05
39 1.111056e-02 5.100506e-05 0.0111105444 5.200675e-05 1.111053e-02
43 6.102286e-03 1.299733e-02 0.0060721729 1.321715e-02 6.053196e-03
44 5.820068e-03 1.097453e-02 0.0058061526 1.117439e-02 5.797354e-03
46 7.299270e-03 3.757618e-11 0.0072992701 3.831415e-11 7.299270e-03
47 3.175535e-03 3.072833e-02 0.0031307880 3.108937e-02 3.103016e-03
53 5.623248e-03 1.706318e-02 0.0056142630 1.738371e-02 5.608573e-03
54 6.196667e-03 3.842095e-02 0.0061433054 3.898944e-02 6.109865e-03
55 5.313808e-03 1.225207e-02 0.0053036140 1.248051e-02 5.297161e-03
56 6.705876e-03 3.840256e-02 0.0066898180 3.910322e-02 6.679663e-03
57 2.354118e-03 6.632336e-02 0.0023192056 6.703737e-02 2.297569e-03
58 4.266603e-03 2.127400e-02 0.0042553674 2.165562e-02 4.248268e-03
59 5.715368e-03 1.174907e-02 0.0057024881 1.197070e-02 5.694330e-03
60 6.051269e-03 1.327578e-02 0.0060462636 1.353126e-02 6.043090e-03
61 4.055600e-03 2.268249e-02 0.0040269538 2.302761e-02 4.008978e-03
62 8.059601e-03 2.981398e-03 0.0080573643 3.039586e-03 8.055945e-03
63 4.865891e-03 1.569325e-02 0.0048560985 1.599272e-02 4.849892e-03
64 5.046214e-03 2.449336e-02 0.0050039249 2.484478e-02 4.977448e-03
   Prior.gene 10 Prior.SNP 10
1   9.755153e-05 5.648615e-03
2   1.298655e-02 7.137918e-03
3   1.062484e-02 8.254316e-03
4   6.435558e-03 8.756190e-03
5   3.675213e-03 1.006389e-02
6   2.148255e-06 6.493423e-03
7   1.394779e-03 1.117327e-02
8   5.935678e-04 1.122929e-02
10  1.139629e-02 6.660766e-03
11  7.629170e-02 2.021772e-03
12  8.897428e-05 5.778804e-03
13  2.335858e-02 4.898382e-03
14  1.225123e-05 6.493188e-03
18  5.713405e-03 1.019148e-02
19  1.038304e-02 6.197683e-03
22  2.409109e-02 4.669421e-03
24  3.370911e-02 4.529652e-03
25  2.154250e-02 4.286700e-03
26  9.309493e-07 9.259225e-03
27  1.288302e-01 6.136786e-04
28  3.062965e-02 4.062414e-03
29  6.877738e-03 9.174671e-03
30  4.454415e-02 3.487065e-03
31  2.286559e-02 4.431891e-03
32  8.709068e-03 5.026894e-03
33  7.356713e-02 6.822926e-03
34  2.221157e-02 5.848754e-03
35  2.080745e-02 4.032974e-03
36  3.963573e-04 4.227211e-03
37  9.893374e-01 5.890941e-05
39  5.263737e-05 1.111053e-02
43  1.335493e-02 6.041301e-03
44  1.129993e-02 5.791827e-03
46  3.877875e-11 7.299270e-03
47  3.131351e-02 3.085774e-03
53  1.758523e-02 5.604996e-03
54  3.934452e-02 6.088978e-03
55  1.262409e-02 5.293105e-03
56  3.954334e-02 6.673285e-03
57  6.748024e-02 2.284149e-03
58  2.189522e-02 4.243810e-03
59  1.211006e-02 5.689200e-03
60  1.369200e-02 6.041093e-03
61  2.324335e-02 3.997742e-03
62  3.076213e-03 8.055052e-03
63  1.618109e-02 4.845988e-03
64  2.506413e-02 4.960921e-03

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] kableExtra_1.1.0    stringr_1.4.0       plyr_1.8.6         
[4] tidyr_0.8.3         plotly_4.9.2.9000   ggplot2_3.3.1      
[7] data.table_1.12.7   mr.ash.alpha_0.1-34

loaded via a namespace (and not attached):
 [1] tidyselect_1.1.0  purrr_0.3.4       lattice_0.20-38  
 [4] colorspace_1.3-2  vctrs_0.3.1       generics_0.0.2   
 [7] htmltools_0.3.6   viridisLite_0.3.0 yaml_2.2.0       
[10] rlang_0.4.6       later_0.7.5       pillar_1.4.4     
[13] glue_1.4.1        withr_2.1.2       lifecycle_0.2.0  
[16] munsell_0.5.0     gtable_0.2.0      workflowr_1.6.2  
[19] rvest_0.3.2       htmlwidgets_1.3   evaluate_0.12    
[22] knitr_1.20        httpuv_1.4.5      Rcpp_1.0.4.6     
[25] readr_1.3.1       promises_1.0.1    scales_1.0.0     
[28] backports_1.1.2   webshot_0.5.1     jsonlite_1.6.1   
[31] fs_1.3.1          hms_0.4.2         digest_0.6.25    
[34] stringi_1.3.1     dplyr_1.0.0       grid_3.5.1       
[37] rprojroot_1.3-2   tools_3.5.1       magrittr_1.5     
[40] lazyeval_0.2.1    tibble_3.0.1      crayon_1.3.4     
[43] whisker_0.3-2     pkgconfig_2.0.2   ellipsis_0.3.1   
[46] Matrix_1.2-15     xml2_1.2.0        rmarkdown_1.10   
[49] httr_1.4.1        rstudioapi_0.11   R6_2.3.0         
[52] git2r_0.26.1      compiler_3.5.1