Processing math: 100%
  • Simulate cis-expression
  • Simulate quantitative phenotype
  • Simulation 1: M = No. of all SNPs, J = No. all genes
    • 1.1 PVESNP0.1, PVEexpr0.1
    • 1.2 PVESNP0.1, PVEexpr0.4
  • Simulation 2: M = No. of all SNPs, J = ~10% all genes (J=2000)
    • 2.1 PVESNP0.1, PVEexpr0.1
    • 2.2 PVESNP0.1, PVEexpr0.4
  • Simulation 3: M = ~ 10% all SNPs (M=50000), J = No. all genes
    • 3.1 PVESNP0.1, PVEexpr0.1
    • 3.2 PVESNP0.1, PVEexpr0.4
  • Simulation 4: M = ~ 10% all SNPs (M=50000), J = ~10% all genes (J=2000)
    • 4.1 PVESNP0.1, PVEexpr0.1
    • 4.2 PVESNP0.1, PVEexpr0.4

Last updated: 2019-11-22

Checks: 6 1

Knit directory: causal-TWAS/

This reproducible R Markdown analysis was created with workflowr (version 1.5.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20191103) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    .ipynb_checkpoints/
    Ignored:    code/.ipynb_checkpoints/
    Ignored:    data/

Unstaged changes:
    Modified:   analysis/simulation-WTCCC.Rmd
    Modified:   code/ctwas_polygenic_V1.R
    Modified:   code/simulate-WTCCC-phenotype.R
    Modified:   code/stats_func.R
    Modified:   code/workflow-WTCCC-simulation.ipynb

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd dd2b4ab simingz 2019-11-19 simulate phenotype
html dd2b4ab simingz 2019-11-19 simulate phenotype
Rmd 28a299b simingz 2019-11-17 PVE
html 28a299b simingz 2019-11-17 PVE
Rmd e5e3011 simingz 2019-11-11 simulate expression
html e5e3011 simingz 2019-11-11 simulate expression
Rmd dcd5252 simingz 2019-11-07 simulate description
html dcd5252 simingz 2019-11-07 simulate description
Rmd f7be05a simingz 2019-11-05 gemma

Use WTCCC data obtained from Peter on CRI.

Simulate cis-expression

We simulate cis- expression based on the following model:

˜X=Gα+ξ For each gene, we sample L eQTLs for this gene, for eQTL k, we have αkN(0,σ2α) ξN(0,1) Then we have the heritability of the gene:

h2eQTL=var(Gα)var(Gα)+var(ξ)=Σkvar(Gk)α2kΣkvar(Gk)α2k+var(ξ)=Σkα2kΣkα2k+var(ξ)Σkσ2αΣkσ2α+var(ξ)=Kσ2α1+Kσ2α

Here, we use scaled genotype data, so var(G)=1. We also have α2kE(α2k)=var(α2k)=σ2α. Usually, K ranges from 1 to 5, let σα=0.3, then h2eQTL ranges from 0.08 to 0.31, this is consistent with gene cis-heritability in reality.

Simulate quantitative phenotype

PVESNP=var(Gθ)var(Gθ)+var(˜Xγ)+σ2eMσ2θMσ2θ+Σjvar(~Xj)γ2j+σ2eMσ2θMσ2θ+Jvar(˜X)σ2γ+σ2e

PVEexprJvar(˜X)σ2γMσ2θ+Jvar(˜X)σ2γ+σ2e

Here, var(˜X) is the cis-heratbility of gene expression. M and J are numbers of causal SNP and gene respectively.

Thus in order to get desired PVESNP and PVEexpr, we set σ2θ and σ2γ based on the following formula:

σ2θ=PVESNPM(1PVESNPPVEexpr) σ2γ=PVEexprJvar(˜X)(1PVESNPPVEexpr)

simudir <- "/home/simingz/causalTWAS/simulations/simulation_WTCCC_20191111/"
show_res <- function(simutag){
  load(Sys.glob(paste0(simudir,simutag,"*phenotype.Rd")))
  outdf1 <- data.frame(truth = c(sigma_gamma^2*J.c, sigma_theta^2*M.c , 1))
  row.names(outdf1) <- c("sigma_gamma^2","sigma_theta^2","sigma_e^2")
  res <- readLines(paste0(simudir, simutag, "_VC/output/", simutag, ".log.txt"))
  outdf1$est <- as.numeric(strsplit(res[24], "  ")[[1]][2:4])
  outdf1$est.se <- as.numeric(strsplit(res[25], "  ")[[1]][2:4])
  print(outdf1)
  outdf2 <- data.frame("est"= c(as.numeric(strsplit(res[20], "  ")[[1]][2:3]), as.numeric(strsplit(res[22], "=")[[1]][2])))
  row.names(outdf2) <- c("PVE.expr","PVE.snp","PVE.total")
  outdf2$est.se <- c(as.numeric(strsplit(res[21], "  ")[[1]][2:3]), as.numeric(strsplit(res[23], "=")[[1]][2]))
  print(outdf2)
}

Simulation 1: M = No. of all SNPs, J = No. all genes

We simulate quantitative phenotype under several scenarios. First we make all genes with imputed gene expression as causal genes and all SNPs as causal SNPs. This matches our polygenic version of the model.

1.1 PVESNP0.1, PVEexpr0.1

show_res("S1.1")
                  truth      est    est.se
sigma_gamma^2 0.1005991 0.122543 0.0395220
sigma_theta^2 0.1250000 0.273277 0.2092710
sigma_e^2     1.0000000 1.007600 0.0804118
                est    est.se
PVE.expr  0.1225340 0.0395189
PVE.snp   0.0705488 0.0540252
PVE.total 0.1930830 0.0643964

1.2 PVESNP0.1, PVEexpr0.4

show_res("S1.2")
                  truth      est    est.se
sigma_gamma^2 0.6438345 0.659297 0.0715076
sigma_theta^2 0.2000000 0.666863 0.3450190
sigma_e^2     1.0000000 0.975871 0.1385370
               est    est.se
PVE.expr  0.408730 0.0443310
PVE.snp   0.106737 0.0552229
PVE.total 0.515467 0.0687856

Simulation 2: M = No. of all SNPs, J = ~10% all genes (J=2000)

2.1 PVESNP0.1, PVEexpr0.1

show_res("S2.1")
                  truth       est    est.se
sigma_gamma^2 0.1005991 0.0878109 0.0386394
sigma_theta^2 0.1250000 0.0131843 0.1975690
sigma_e^2     1.0000000 1.1136600 0.0758622
                 est    est.se
PVE.expr  0.08931650 0.0393019
PVE.snp   0.00346228 0.0518827
PVE.total 0.09277880 0.0617994

2.2 PVESNP0.1, PVEexpr0.4

show_res("S2.2")
                  truth       est    est.se
sigma_gamma^2 0.6438345  0.609504 0.0687422
sigma_theta^2 0.2000000 -0.271802 0.3082090
sigma_e^2     1.0000000  1.240020 0.1246970
                 est    est.se
PVE.expr   0.3977290 0.0448574
PVE.snp   -0.0457914 0.0519251
PVE.total  0.3519380 0.0651690

Simulation 3: M = ~ 10% all SNPs (M=50000), J = No. all genes

3.1 PVESNP0.1, PVEexpr0.1

show_res("S3.1")
                  truth      est    est.se
sigma_gamma^2 0.1005991 0.107247 0.0382940
sigma_theta^2 0.1250000 0.626345 0.2070430
sigma_e^2     1.0000000 0.880455 0.0792357
               est    est.se
PVE.expr  0.110097 0.0393119
PVE.snp   0.166007 0.0548750
PVE.total 0.276105 0.0651462

3.2 PVESNP0.1, PVEexpr0.4

show_res("S3.2")
                  truth      est    est.se
sigma_gamma^2 0.6438345 0.702810 0.0720651
sigma_theta^2 0.2000000 0.968523 0.3470150
sigma_e^2     1.0000000 0.788533 0.1418140
               est    est.se
PVE.expr  0.443583 0.0454843
PVE.snp   0.157822 0.0565465
PVE.total 0.601405 0.0716856

Simulation 4: M = ~ 10% all SNPs (M=50000), J = ~10% all genes (J=2000)

4.1 PVESNP0.1, PVEexpr0.1

show_res("S4.1")
                  truth     est    est.se
sigma_gamma^2 0.1005991 0.12410 0.0409952
sigma_theta^2 0.1250000 0.33148 0.2124450
sigma_e^2     1.0000000 1.02347 0.0815844
                est    est.se
PVE.expr  0.1205590 0.0398255
PVE.snp   0.0831393 0.0532839
PVE.total 0.2036980 0.0634763

4.2 PVESNP0.1, PVEexpr0.4

show_res("S4.2")
                  truth      est    est.se
sigma_gamma^2 0.6438345 0.703181 0.0755506
sigma_theta^2 0.2000000 0.617824 0.3450340
sigma_e^2     1.0000000 1.008390 0.1414000
               est    est.se
PVE.expr  0.420990 0.0452316
PVE.snp   0.095497 0.0533320
PVE.total 0.516487 0.0678001

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] workflowr_1.5.0 Rcpp_1.0.0      digest_0.6.18   later_0.7.5    
 [5] rprojroot_1.3-2 R6_2.3.0        backports_1.1.2 git2r_0.26.1   
 [9] magrittr_1.5    evaluate_0.12   stringi_1.3.1   fs_1.3.1       
[13] promises_1.0.1  whisker_0.3-2   rmarkdown_1.10  tools_3.5.1    
[17] stringr_1.4.0   glue_1.3.0      httpuv_1.4.5    yaml_2.2.0     
[21] compiler_3.5.1  htmltools_0.3.6 knitr_1.20