Last updated: 2020-08-04

Checks: 6 1

Knit directory: causal-TWAS/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20191103) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version dff432c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    code/workflow/.ipynb_checkpoints/
    Ignored:    data/

Untracked files:
    Untracked:  analysis/simulation-multi-ukbchr17to22-gtex.adipose_sa2_v2.Rmd
    Untracked:  code/run_test_mr.ash2s_temp.R

Unstaged changes:
    Modified:   analysis/index.Rmd
    Modified:   analysis/simulation-multi-ukbchr17to22-gtex.adipose.Rmd
    Modified:   analysis/simulation-multi-ukbchr22-gtex.adipose2.Rmd
    Modified:   code/mr.ash2_FBM.R
    Modified:   code/run_simulate_data.R
    Modified:   code/run_test_mr.ash2s.R
    Modified:   code/run_test_susie.R
    Modified:   code/workflow/workflow-ashtest-20200730.ipynb
    Modified:   code/workflow/workflow-ashtest3.ipynb
    Modified:   code/workflow/workflow-ashtest4.ipynb

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Run simulation 8 times for ukb chr 17 to chr 22 combined. SNPs are downsampled to 1/10, eQTLs defined by FUSION-TWAS (Adipose/GTEx) lasso effect size > 0 were kept, p= 86k, n = 20k.

library(mr.ash.alpha)
library(data.table)
suppressMessages({library(plotly)})
library(tidyr)
library(plyr)
library(stringr)
library(kableExtra)
simdatadir <- "~/causalTWAS/simulations/simulation_ashtest_20200721/"
outputdir <- "~/causalTWAS/simulations/simulation_ashtest_20200721/"
susiedir <- "~/causalTWAS/simulations/simulation_susietest_20200721/"
tags <- paste0('20200721-1-', 1:7)
tagglob <- '20200721-1-*'
tagextr <- '20200721-1-\\d+'
tag2s <- c('zeroes-es', 'zerose-es', 'lassoes-es','lassoes-se')
get_files <- function(tag, tag2){
  par <- paste0(outputdir, tag, "-mr.ash2s.", tag2, ".param.txt")
  rpip <- paste0(outputdir, tag, "-mr.ash2s.", tag2, ".rPIP.txt")
  
  gmrash <- paste0(outputdir, tag, "-mr.ash2s.", tag2, ".expr.txt")
  smrash <- paste0(outputdir, tag, "-mr.ash2s.", tag2, ".snp.txt")   
  
  ggwas <- paste0(outputdir, tag, ".exprgwas.txt.gz")
  sgwas <- paste0(outputdir, tag, ".snpgwas.txt.gz")
  
  gsusie <- paste0(susiedir, tag, ".", tag2, ".L3.susieres.expr.txt")
  ssusie <- paste0(susiedir, tag, ".", tag2, ".L3.susieres.snp.txt")
  
  return(tibble::lst(par, rpip, gmrash, ggwas, smrash, sgwas, gsusie, ssusie))
}

get_tags <- function(globpattern, extrpattern, tag2){
  lapply(lapply(get_files(globpattern, tag2), Sys.glob), str_extract, pattern = extrpattern)
}

Mr.ash2 parameter estimation

Results for 10 simulations runs, using different initiate and update strategy

show_param <- function(tags, tag2){
  f <- lapply(tags, get_files, tag2 = tag2)
  parf <- lapply(f, '[[', "par")
  param <- do.call(rbind, lapply(parf, function(x) t(read.table(x))[2:1,]))
  truth <- param[1:(nrow(param)/2)*2-1,]
  est <- param[1:(nrow(param)/2)*2,]
  outdt <- matrix(0, ncol = 2*ncol(param), nrow = nrow(param)/2)
  outdt[,c(1,3,5,7)] <- truth
  outdt[,c(2,4,6,8)] <- est
  outdt <-cbind(1:nrow(outdt),outdt)
  colnames(outdt) <- c("Simulation#", paste0(rep(c("Truth","Est."),4)))
  knitr::kable(outdt) %>%
  kable_styling("striped") %>%
  add_header_above(c(" " = 1, "Gene.pi1" = 2, "Gene.PVE" = 2, "SNP.pi1" = 2, "SNP.PVE" =2))
}

NULL; expr-snp; expr-snp

show_param(tags, tag2s[1])
Gene.pi1
Gene.PVE
SNP.pi1
SNP.PVE
Simulation# Truth Est. Truth Est. Truth Est. Truth Est.
1 0.0502117 0.0031701 0.0066826 0.0022282 0.0024981 0.0017487 0.0510701 0.0366234
2 0.0502117 0.0043097 0.0091963 0.0003449 0.0024981 0.0022082 0.0437056 0.0458391
3 0.0502117 0.0247913 0.0114728 0.0019731 0.0024981 0.0023113 0.0475207 0.0306206
4 0.0502117 0.0433514 0.0114605 0.0116073 0.0024981 0.0027771 0.0548585 0.0342852
5 0.0502117 0.0554445 0.0110859 0.0148455 0.0024981 0.0016182 0.0478479 0.0243124
6 0.0502117 0.0202643 0.0097170 0.0111216 0.0024981 0.0019085 0.0580372 0.0339128
7 0.0502117 0.0373301 0.0111216 0.0145758 0.0024981 0.0018831 0.0491958 0.0309898

NULL; snp-expr; expr-snp

show_param(tags, tag2s[2])
Gene.pi1
Gene.PVE
SNP.pi1
SNP.PVE
Simulation# Truth Est. Truth Est. Truth Est. Truth Est.
1 0.0502117 0.0031701 0.0066826 0.0022282 0.0024981 0.0017487 0.0510701 0.0366234
2 0.0502117 0.0043097 0.0091963 0.0003449 0.0024981 0.0022082 0.0437056 0.0458392
3 0.0502117 0.0247914 0.0114728 0.0019731 0.0024981 0.0023113 0.0475207 0.0306209
4 0.0502117 0.0424709 0.0114605 0.0118770 0.0024981 0.0025278 0.0548585 0.0343060
5 0.0502117 0.0558006 0.0110859 0.0146272 0.0024981 0.0016143 0.0478479 0.0242827
6 0.0502117 0.0202638 0.0097170 0.0111219 0.0024981 0.0019085 0.0580372 0.0339131
7 0.0502117 0.0373297 0.0111216 0.0145756 0.0024981 0.0018832 0.0491958 0.0309887

lasso; expr-snp; expr-snp

show_param(tags, tag2s[3])
Gene.pi1
Gene.PVE
SNP.pi1
SNP.PVE
Simulation# Truth Est. Truth Est. Truth Est. Truth Est.
1 0.0502117 0.0031626 0.0066826 0.0022370 0.0024981 0.0017442 0.0510701 0.0372794
2 0.0502117 0.0023143 0.0091963 0.0001921 0.0024981 0.0019384 0.0437056 0.0363801
3 0.0502117 0.0237669 0.0114728 0.0018924 0.0024981 0.0022848 0.0475207 0.0307098
4 0.0502117 0.0159417 0.0114605 0.0012828 0.0024981 0.0025405 0.0548585 0.0483650
5 0.0502117 0.0588623 0.0110859 0.0128581 0.0024981 0.0015320 0.0478479 0.0239580
6 0.0502117 0.0204854 0.0097170 0.0109340 0.0024981 0.0018279 0.0580372 0.0330261
7 0.0502117 0.0397177 0.0111216 0.0148919 0.0024981 0.0017947 0.0491958 0.0375966

lasso; expr-snp; snp-expr

show_param(tags, tag2s[4])
Gene.pi1
Gene.PVE
SNP.pi1
SNP.PVE
Simulation# Truth Est. Truth Est. Truth Est. Truth Est.
1 0.0502117 0.0028511 0.0066826 0.0022522 0.0024981 0.0014071 0.0510701 0.0381575
2 0.0502117 0.0148369 0.0091963 0.0061704 0.0024981 0.0015261 0.0437056 0.0302851
3 0.0502117 0.0392584 0.0114728 0.0124768 0.0024981 0.0015233 0.0475207 0.0255997
4 0.0502117 0.0383624 0.0114605 0.0115444 0.0024981 0.0018645 0.0548585 0.0391774
5 0.0502117 0.0478061 0.0110859 0.0156099 0.0024981 0.0011384 0.0478479 0.0235886
6 0.0502117 0.0225364 0.0097170 0.0127132 0.0024981 0.0014313 0.0580372 0.0308298
7 0.0502117 0.0392400 0.0111216 0.0153121 0.0024981 0.0015686 0.0491958 0.0371479

Regional mr.ash2s PIP overview

Take simulation 1 (NULL; expr-snp; expr-snp) as examples. We use region size 500kb and PIP cut off at 0.5 for SUSIE.

chrom = 18
f <- get_files(tag= "20200721-1-2" , tag2 = tag2s[1])
allchr <- read.table(f[["rpip"]], header = T)
a <- allchr[allchr["chrom"]==chrom,]
print(paste("plot for chr", chrom))
[1] "plot for chr 18"
par(mar=c(5, 4, 4, 6) + 0.1)
with(a, plot(p0, rPIP, col ='salmon', xlab = "position", ylab= "Sum of PIP", type = 'h', lwd = 2))
par(new = T)
with(a, plot(p0, nCausal, pch =19, col = "darkgreen",axes = FALSE, bty = "n", xlab = "", ylab = ""))
axis(side = 4)
mtext(side = 4, line = 3, 'No. causal signals')
legend("topleft",
       legend=c("Mr.ASH PIP", "# Causal"),
       lty=c(1,0), pch=c(NA, 19), col=c("salmon", "darkgreen"))
grid()

PIP calibration

We run 50 simulations and combine results.

#' s is pip or fdr.
cp_plot <- function(s, ifcausal, mode = c("PIP", "FDR"), main = mode[1]){
  # ifcausal:0,1
  a_bin <- cut(s, breaks= seq(0,1, by=0.1))
  if (mode == "PIP") {
     expected = c(by(s, a_bin, FUN = mean))
     observed = c(by(ifcausal, a_bin, FUN = mean))
  } else if (mode == "FDR"){
     expected = c(by(s, a_bin, FUN = mean))
     observed = 1 - c(by(ifcausal, a_bin, FUN = mean))
  }
  plot(expected, observed, xlim= c(0,1), ylim=c(0,1), pch =19, main = main)
  lines(x = c(0,1), y = c(0,1), col ="red")
}

caliPIP_plot <- function(tags, tag2){
  f <- lapply(tags, get_files, tag2 = tag2)
  mrashf <- lapply(f, '[[', "gmrash")
  names(mrashf) <- tags
  
  susief <- lapply(f, '[[', "gsusie")
  names(susief) <- tags

  .tagname <- function(x, flist){
    a <- read.table(flist[[x]], header =T)
    a[, "name"] <- paste0(x, ":", a[, "name"])
    a
  }
  mrashres <- do.call(rbind, lapply(tags, .tagname, flist = mrashf))
  susieres <- do.call(rbind, lapply(tags, .tagname, flist = susief))
 
  res <- merge(mrashres, susieres, by = "name", all = T)
  
  res <- res[complete.cases(res),]
  res <- rename(res, c("PIP" = "mr.ash_PIP", "pip" = "SUSIE_PIP", "pip.null" = "SUSIE_PIP_null", "pip.w0" = "SUSIE_PIP_w0"))
  par(mfrow=c(1,4), mar=c(5, 6, 4, 1))
  cp_plot(res$mr.ash_PIP, res$ifcausal, main = "Mr.ash PIP")
  cp_plot(res$SUSIE_PIP, res$ifcausal, main = "SUSIE PIP")
  cp_plot(res$SUSIE_PIP_null, res$ifcausal, main = "SUSIE PIP null")
  cp_plot(res$SUSIE_PIP_w0, res$ifcausal, main = "SUSIE PIP weighted null")
}

caliFDR_plot <- function(tags, tag2){
  
  f <- lapply(tags, get_files, tag2 = tag2)
  gwasf <- lapply(f, '[[', "ggwas")
  names(gwasf) <- tags

  .tagname <- function(x, flist, colnames = NULL){
    a <- read.table(flist[[x]], header =T)
    if (!is.null(colnames)){
      colnames(a) <- colnames
    }
    a[, "name"] <- paste0(x, ":", a[, "name"])
    a
  }
  
  .addFDR <- function(res){
    res$FDR <- p.adjust(res$PVALUE, method = "fdr")
    res
  }
  
  
  gwasres <- do.call(rbind, lapply(lapply(tags, .tagname, flist = gwasf, 
                                   colnames =  c("chr", "p0",   "p1", "name", 
                                                 "Estimate", "Std.Error", "t-value", "PVALUE")), .addFDR))
  
  f <- lapply(tags, get_files, tag2 = tag2)
  mrashf <- lapply(f, '[[', "gmrash")
  names(mrashf) <- tags
  
  susief <- lapply(f, '[[', "gsusie")
  names(susief) <- tags

  .tagname <- function(x, flist){
    a <- read.table(flist[[x]], header =T)
    a[, "name"] <- paste0(x, ":", a[, "name"])
    a
  }
  mrashres <- do.call(rbind, lapply(tags, .tagname, flist = mrashf))
  susieres <- do.call(rbind, lapply(tags, .tagname, flist = susief))
 
  res <- merge(mrashres, susieres, by = "name", all = T)
  
  res <- merge(res, gwasres, by = "name", all = T)
  
  res <- res[complete.cases(res),]
  
  cp_plot(res$FDR, res$ifcausal, mode ="FDR", main = "TWAS FDR")
  cat("FDR at bonferroni corrected p = 0.05: ", 1 - mean(res[res$PVALUE < 0.05 /dim(res)[1], "ifcausal"]))
}

NULL; expr-snp; expr-snp

tag2 = "zeroes-es"
tags_ext <- Reduce(intersect, get_tags(tagglob, tagextr, tag2 = tag2)['gsusie'])
res <- caliPIP_plot(tags = tags_ext, tag2 = tag2)
Warning in if (mode == "PIP") {: the condition has length > 1 and only the
first element will be used

Warning in if (mode == "PIP") {: the condition has length > 1 and only the
first element will be used

Warning in if (mode == "PIP") {: the condition has length > 1 and only the
first element will be used

Warning in if (mode == "PIP") {: the condition has length > 1 and only the
first element will be used

caliFDR_plot(tags = tags_ext, tag2 = tag2)

FDR at bonferroni corrected p = 0.05:  0.645933

Lasso; expr-snp; expr-snp

caliPIP_plot(tags = tags_ext, tag2 = "lassoes-es")
Warning in if (mode == "PIP") {: the condition has length > 1 and only the
first element will be used

Warning in if (mode == "PIP") {: the condition has length > 1 and only the
first element will be used

Warning in if (mode == "PIP") {: the condition has length > 1 and only the
first element will be used

Warning in if (mode == "PIP") {: the condition has length > 1 and only the
first element will be used

caliFDR_plot(tags = tags_ext, tag2 = "lassoes-es")

FDR at bonferroni corrected p = 0.05:  0.647343

PIP scatter plot

mr.ash2s PIP vs. susie PIP.

scatter_plot_PIP<- function(tags, tag2){
  f <- lapply(tags, get_files, tag2 = tag2)
  mrashf <- lapply(f, '[[', "gmrash")
  names(mrashf) <- tags
  
  susief <- lapply(f, '[[', "gsusie")
  names(susief) <- tags

  .tagname <- function(x, flist){
    a <- read.table(flist[[x]], header =T)
    a[, "name"] <- paste0(x, ":", a[, "name"])
    a
  }
  mrashres <- do.call(rbind, lapply(tags, .tagname, flist = mrashf))
  susieres <- do.call(rbind, lapply(tags, .tagname, flist = susief))
 
  res <- merge(mrashres, susieres, by = "name", all = T)
  
  res <- res[complete.cases(res),]
  res <- rename(res, c("PIP" = "mr.ash_PIP", "pip" = "SUSIE_PIP", "pip.null" = "SUSIE_PIP_null", "pip.w0" = "SUSIE_PIP_w0") )
  res$ifcausal <- mapvalues(res$ifcausal, 
          from=c(0,1), 
          to=c("Non causal", "Causal"))
  
  fig1 <- plot_ly(data = res, x = ~ mr.ash_PIP, y = ~ SUSIE_PIP, color = ~ ifcausal, 
                 colors = c( "salmon", "darkgreen"))
  
  fig2 <- plot_ly(data = res, x = ~ mr.ash_PIP, y = ~ SUSIE_PIP_null, color = ~ ifcausal, 
                 colors = c( "salmon", "darkgreen"))
  
  fig3 <- plot_ly(data = res, x = ~ mr.ash_PIP, y = ~ SUSIE_PIP_w0, color = ~ ifcausal, 
                 colors = c( "salmon", "darkgreen"))
  
  fig <- subplot(fig1, fig2, fig3, titleX = TRUE, titleY = T, margin = 0.05)
  fig
}

NULL; expr-snp; expr-snp

scatter_plot_PIP(tags, tag2s[1])
Warning: `arrange_()` is deprecated as of dplyr 0.7.0.
Please use `arrange()` instead.
See vignette('programming') for more help
This warning is displayed once every 8 hours.
Call `lifecycle::last_warnings()` to see where this warning was generated.

## NULL; snp-expr; expr-snp

scatter_plot_PIP(tags, tag2s[2])

## lasso; expr-snp; expr-snp

scatter_plot_PIP(tags, tag2s[3])

lasso; expr-snp; snp-expr

scatter_plot_PIP(tags, tag2s[4])

ROC curve

ROC_plot<- function(tags, tag2){
  f <- lapply(tags, get_files, tag2 = tag2)
  mrashf <- lapply(f, '[[', "gmrash")
  names(mrashf) <- tags
  
  susief <- lapply(f, '[[', "gsusie")
  names(susief) <- tags
  
  gwasf <- lapply(f, '[[', "ggwas")
  names(gwasf) <- tags

  .tagname <- function(x, flist, colnames = NULL){
    a <- read.table(flist[[x]], header =T)
    if (!is.null(colnames)){
      colnames(a) <- colnames
    }
    a[, "name"] <- paste0(x, ":", a[, "name"])
    a
  }
  mrashres <- do.call(rbind, lapply(tags, .tagname, flist = mrashf))
  susieres <- do.call(rbind, lapply(tags, .tagname, flist = susief))
  gwasres <- do.call(rbind, lapply(tags, .tagname, flist = gwasf, 
                                   colnames =  c("chr", "p0",   "p1", "name", "Estimate", "Std.Error", "t-value", "PVALUE")))

  res <- merge(mrashres, susieres, by = "name", all = T)
  res <- merge(res, gwasres, by = "name", all = T)
  
  res <- res[complete.cases(res),]
  res <- rename(res, c("PIP" = "mr.ash", "pip" = "SUSIE", "pip.null"= "SUSIE.null", "pip.w0" = "SUSIE.w0", "PVALUE" = "TWAS") )
  res[,"TWAS"] <- -log10(res[, "TWAS"])
  
  roccolors <-  c("red", "green", "orange", "pink", "blue")
  methods <- c("mr.ash", "SUSIE", "SUSIE.null", "SUSIE.w0", "TWAS")
  plot(0, xlim=c(0,1), ylim=c(0,1), col="white", xlab = "FPR", ylab = "TPR")
  for (i in 1:length(methods)){
    method <- methods[i]
    bordered <- res[order(res[,method]),] 
    actuals <- bordered$ifcausal == 1
    sens <- (sum(actuals) - cumsum(actuals))/sum(actuals)
    spec <- cumsum(!actuals)/sum(!actuals)
    lines(1 - spec, sens, type = "l", col = roccolors[i])
    abline(c(0,0),c(1,1))
    auc <- sum(spec*diff(c(0, 1 - sens)))
    cat("AUC for ", method, ": ", auc)
  }
  legend(0.6,0.3, legend= methods, col=roccolors, lty=1, cex=0.5 )
  grid()
}

NULL; expr-snp; expr-snp

tags <- paste0('20200721-1-', c(2,4:9))
ROC_plot(tags, tag2s[2])

AUC for  mr.ash :  0.6894131AUC for  SUSIE :  0.6824739AUC for  SUSIE.null :  0.6762515AUC for  SUSIE.w0 :  0.6835701AUC for  TWAS :  0.7488581

NULL; snp-expr; expr-snp

ROC_plot(tags, tag2s[2])

AUC for  mr.ash :  0.6894131AUC for  SUSIE :  0.6824739AUC for  SUSIE.null :  0.6762515AUC for  SUSIE.w0 :  0.6835701AUC for  TWAS :  0.7488581

lasso; expr-snp; expr-snp

ROC_plot(tags, tag2s[3])

AUC for  mr.ash :  0.6778905AUC for  SUSIE :  0.6857911AUC for  SUSIE.null :  0.6818999AUC for  SUSIE.w0 :  0.6799617AUC for  TWAS :  0.7489982

lasso; expr-snp; snp-expr

ROC_plot(tags, tag2s[4])

AUC for  mr.ash :  0.7589313AUC for  SUSIE :  0.7235847AUC for  SUSIE.null :  0.7043028AUC for  SUSIE.w0 :  0.7258811AUC for  TWAS :  0.768614

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] kableExtra_1.1.0    stringr_1.4.0       plyr_1.8.6         
[4] tidyr_0.8.3         plotly_4.9.2.9000   ggplot2_3.3.1      
[7] data.table_1.12.7   mr.ash.alpha_0.1-34

loaded via a namespace (and not attached):
 [1] tidyselect_1.1.0  purrr_0.3.4       lattice_0.20-38  
 [4] colorspace_1.3-2  vctrs_0.3.1       generics_0.0.2   
 [7] htmltools_0.3.6   viridisLite_0.3.0 yaml_2.2.0       
[10] rlang_0.4.6       later_0.7.5       pillar_1.4.4     
[13] glue_1.4.1        withr_2.1.2       lifecycle_0.2.0  
[16] munsell_0.5.0     gtable_0.2.0      workflowr_1.6.2  
[19] rvest_0.3.2       htmlwidgets_1.3   evaluate_0.12    
[22] knitr_1.20        crosstalk_1.0.0   httpuv_1.4.5     
[25] highr_0.7         Rcpp_1.0.4.6      xtable_1.8-3     
[28] readr_1.3.1       promises_1.0.1    scales_1.0.0     
[31] backports_1.1.2   webshot_0.5.1     jsonlite_1.6.1   
[34] mime_0.6          fs_1.3.1          hms_0.4.2        
[37] digest_0.6.25     stringi_1.3.1     shiny_1.2.0      
[40] dplyr_1.0.0       grid_3.5.1        rprojroot_1.3-2  
[43] tools_3.5.1       magrittr_1.5      lazyeval_0.2.1   
[46] tibble_3.0.1      crayon_1.3.4      pkgconfig_2.0.2  
[49] ellipsis_0.3.1    Matrix_1.2-15     xml2_1.2.0       
[52] rmarkdown_1.10    httr_1.4.1        rstudioapi_0.11  
[55] R6_2.3.0          git2r_0.26.1      compiler_3.5.1