Last updated: 2019-05-01

Checks: 6 0

Knit directory: dsc-log-fold-change/

This reproducible R Markdown analysis was created with workflowr (version 1.3.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20181115) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    .sos/
    Ignored:    analysis/.sos/
    Ignored:    dsc/.sos/
    Ignored:    dsc/benchmark/
    Ignored:    dsc/dsc_test/.sos/
    Ignored:    output/

Untracked files:
    Untracked:  analysis/eval_initial_type1_libsize.Rmd
    Untracked:  analysis/figure/
    Untracked:  dsc/modules/filter_genes.R

Unstaged changes:
    Modified:   analysis/index.Rmd
    Modified:   dsc/benchmark.dsc
    Modified:   dsc/benchmark.sh
    Deleted:    dsc/modules/filter_gene.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
html 3fe797f Joyce Hsiao 2019-05-01 Build site.
Rmd 87dd6db Joyce Hsiao 2019-05-01 plot type I by sample size by method
html 5d33434 Joyce Hsiao 2019-04-30 Build site.
Rmd 47ef39a Joyce Hsiao 2019-04-30 add histogram of unadjusted p-value
html 7a49566 Joyce Hsiao 2019-04-30 Build site.
Rmd 36f9e9c Joyce Hsiao 2019-04-30 log mean instead of mean log
html 7a49109 Joyce Hsiao 2019-04-29 Build site.
Rmd 7cf6ace Joyce Hsiao 2019-04-29 mean of log to log of mean
html ec7a7c6 Joyce Hsiao 2019-04-29 Build site.
Rmd c422a07 Joyce Hsiao 2019-04-29 overlay median and mean of type I error
html ffdcfcc Joyce Hsiao 2019-04-29 Build site.
Rmd 78479d7 Joyce Hsiao 2019-04-29 change fig size
html 2b9140e Joyce Hsiao 2019-04-29 Build site.
Rmd 3128918 Joyce Hsiao 2019-04-29 add log2 type I error
html 5514b7c Joyce Hsiao 2019-04-23 Build site.
Rmd dac3c5c Joyce Hsiao 2019-04-23 initial type I error eval results

Introduction


Extract dsc results

knitr::opts_chunk$set(warning=F, message=F)

library(dscrutils)
library(tidyverse)
── Attaching packages ──────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.0       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ─────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()

extract dsc output and get p-values, q-values, true signals, etc.

dir_dsc <- "/scratch/midway2/joycehsiao/dsc-log-fold-change/pipe_type1"

dsc_res <- dscquery(dir_dsc, 
                    targets=c("data_poisthin_null",
                              "data_poisthin_null.seed", 
                              "data_poisthin_null.n1",
                              "method", "pval_rank"), 
                    ignore.missing.file = T)

method_vec <- as.factor(dsc_res$method)
n_methods <- nlevels(method_vec)


res <- vector("list",n_methods)
for (i in 1:nrow(dsc_res)) {
#  print(i)
  fl_pval <- readRDS(file.path(dir_dsc,
                       paste0(as.character(dsc_res$method.output.file[i]), ".rds")))
  # fl_beta <- readRDS(file.path(dir_dsc,
  #                  paste0(as.character(dsc_res$data_poisthin_null.output.file[i]), ".rds")))
  seed <- dsc_res$data_poisthin_null.seed[i]
  n1 <- dsc_res$data_poisthin_null.n1[i]
  # fl_qval <- readRDS(file.path(dir_dsc,
  #                    paste0(as.character(dsc_res$pval_rank.output.file[i]), ".rds")))
  res[[i]] <- data.frame(method = as.character(dsc_res$method)[i],
                         seed = seed,
                         n1=n1,
                         pval = fl_pval$pval,
                         stringsAsFactors = F)
}
res_merge <- do.call(rbind, res)
res_merge$method <- factor(res_merge$method)
res_merge$n1 <- factor(res_merge$n1)

saveRDS(res_merge, file = "output/eval_initial_type1.Rmd/res_merge.rds")

Analysis

res_merge <- readRDS(file = "output/eval_initial_type1.Rmd/res_merge.rds")

make_plots <- function(res, alpha, labels,
                       args=list(n1, labels)) {
  n_methods <- length(unique(res$method))
  cols <- RColorBrewer::brewer.pal(n_methods,name="Dark2")
  res %>% filter(n1==args$n1) %>% 
    group_by(method, seed) %>%
    summarise(type1=mean(pval<alpha, na.rm=T), nvalid=sum(!is.na(pval))) %>%
#    group_by(method) %>%
    # summarise(mn=mean(type1, na.rm=T), 
    #           n=sum(!is.na(type1)), se=sd(type1, na.rm=T)/sqrt(n)) %>%
    ggplot(., aes(x=method, y=type1, col=method)) +
        # geom_errorbar(aes(ymin=mn+se, ymax=mn-se), width=.3) + 
        geom_boxplot() + geom_point(size=.7) + xlab("") +
      ylab("Type I error") +
      scale_x_discrete(position = "top",
                       labels=args$labels) +
      scale_color_manual(values=cols) +
      theme(axis.text.x=element_text(angle = 20, vjust = -.3, hjust=-.1))
}

library(cowplot)
levels(factor(res_merge$method))
[1] "deseq2"               "edger"                "limma_voom"          
[4] "t_test"               "t_test_log2cpm_quant" "wilcoxon"            
make_plots(res_merge, alpha=.001,
           args=list(n1=50, labels=labels)) + 
          ggtitle("Type error at alpha < .001, 50/group") + ylim(0,.025) +
          geom_hline(yintercept=.001, col="gray30", lty=3) +
          stat_summary(fun.y=median, geom="point", shape=18, size=6, col="black") +
          stat_summary(fun.y=mean, geom="point", shape=4, size=4, col="black")

Version Author Date
ec7a7c6 Joyce Hsiao 2019-04-29
ffdcfcc Joyce Hsiao 2019-04-29
2b9140e Joyce Hsiao 2019-04-29
5514b7c Joyce Hsiao 2019-04-23
make_plots(res_merge, alpha=.001,
             args=list(n1=250, labels=labels)) + 
            ggtitle("Type error at alpha < .001, 250/group") + ylim(0,.03) +
            geom_hline(yintercept=.001, col="gray30", lty=3) +
            stat_summary(fun.y=median, geom="point", shape=18, size=6, col="black") +
            stat_summary(fun.y=mean, geom="point", shape=4, size=4, col="black")

Version Author Date
ec7a7c6 Joyce Hsiao 2019-04-29
ffdcfcc Joyce Hsiao 2019-04-29
2b9140e Joyce Hsiao 2019-04-29
5514b7c Joyce Hsiao 2019-04-23

log2 scale

make_plots_log2 <- function(res, alpha, labels,
                       args=list(n1, labels)) {
  n_methods <- length(unique(res$method))
  cols <- RColorBrewer::brewer.pal(n_methods,name="Dark2")
  res_plot <- res %>% filter(n1==args$n1) %>% 
    group_by(method, seed) %>%
    summarise(type1=mean(pval<alpha, na.rm=T), nvalid=sum(!is.na(pval))) 
  
  res_plot_mn <- res_plot %>% group_by(method) %>%
    summarise(mn=mean(type1, na.rm=T),
              med=median(type1, na.rm=T))
    # summarise(mn=mean(type1, na.rm=T), 
    #           n=sum(!is.na(type1)), se=sd(type1, na.rm=T)/sqrt(n)) %>%
    ggplot(data=res_plot, aes(x=method, y=log2(type1), col=method)) +
        # geom_errorbar(aes(ymin=mn+se, ymax=mn-se), width=.3) + 
        geom_boxplot() + geom_point(size=.7) + xlab("") +
      scale_x_discrete(position = "top",
                       labels=args$labels) +
      scale_color_manual(values=cols) +
      theme(axis.text.x=element_text(angle = 20, vjust = -.3, hjust=-.1)) +
        geom_point(data=res_plot_mn,
                   aes(x=method, y=log2(mn)), shape=4, size=4, col="black") +
        geom_point(data=res_plot_mn,
                   aes(x=method, y=log2(med)), shape=18, size=6, col="black")
}

library(cowplot)
levels(factor(res_merge$method))
[1] "deseq2"               "edger"                "limma_voom"          
[4] "t_test"               "t_test_log2cpm_quant" "wilcoxon"            
labels <- c("deseq2", "edger", "limma_v", "t_test", "t_log2cpm_q", "wilcoxon")

make_plots_log2(res_merge, alpha=.001,
                 args=list(n1=50, labels=labels)) + 
                ggtitle("Type I error at alpha < .001, 50/group") + #ylim(0,.03) +
                geom_hline(yintercept=log2(.001), col="gray30", lty=3) +
                ylab("log2 type I error") 

Version Author Date
7a49109 Joyce Hsiao 2019-04-29
ec7a7c6 Joyce Hsiao 2019-04-29
2b9140e Joyce Hsiao 2019-04-29
make_plots_log2(res_merge, alpha=.001,
                 args=list(n1=250, labels=labels)) + 
                ggtitle("Type error at alpha < .001, 250/group") + 
                geom_hline(yintercept=log2(.001), col="gray30", lty=3) +
                ylab("log2 type I error") 

Version Author Date
7a49109 Joyce Hsiao 2019-04-29
ec7a7c6 Joyce Hsiao 2019-04-29
2b9140e Joyce Hsiao 2019-04-29

log2 scale by sample size by method

make_plots_log2_v2 <- function(res, alpha) {
  n_methods <- length(unique(res$method))
  cols <- RColorBrewer::brewer.pal(n_methods,name="Dark2")
  res_plot <- res %>% #filter(n1==args$n1) %>% 
    group_by(n1, method, seed) %>%
    summarise(type1=mean(pval<alpha, na.rm=T), nvalid=sum(!is.na(pval))) 
  res_plot$n1 <- factor(res_plot$n1)
  
  res_plot_mn <- res_plot %>% group_by(n1, method) %>%
    summarise(mn=mean(type1, na.rm=T),
              med=median(type1, na.rm=T))
  
  ggplot(data=res_plot, aes(x=n1, y=log2(type1), col=method)) +
    geom_point(size=.7) + 
    facet_wrap(~method) + 
    geom_point(data=res_plot_mn,
         aes(x=n1, y=log2(mn)), shape=4, size=3, col="black") +
    geom_point(data=res_plot_mn,
         aes(x=n1, y=log2(med)), shape=18, size=3, col="black") + #+ xlab("") +
    scale_color_manual(values=cols) +
    geom_hline(yintercept=log2(.001), col="gray30", lty=3)  +
    ylab("log2 Type I error") + xlab("sample size/group")
}

make_plots_log2_v2(res_merge, alpha=.001) + 
                ggtitle("Type I error at alpha < .001") + ylim(-12,-3)

Version Author Date
3fe797f Joyce Hsiao 2019-05-01
5d33434 Joyce Hsiao 2019-04-30
res_merge %>% #filter(n1==args$n1) %>% 
  group_by(n1, method, seed) %>%
  summarise(type1=mean(pval<.001, na.rm=T), nvalid=sum(!is.na(pval)))  %>%
  group_by(method, n1) %>%
  summarise(mn=mean(type1, na.rm=T),
            med=median(type1, na.rm=T))
# A tibble: 12 x 4
# Groups:   method [6]
   method               n1          mn      med
   <fct>                <fct>    <dbl>    <dbl>
 1 deseq2               50    0.000974 0.000513
 2 deseq2               250   0.00449  0.00372 
 3 edger                50    0.00491  0.004   
 4 edger                250   0.0107   0.01    
 5 limma_voom           50    0.00227  0.001   
 6 limma_voom           250   0.00218  0.001   
 7 t_test               50    0.00094  0.001   
 8 t_test               250   0.00118  0.001   
 9 t_test_log2cpm_quant 50    0.00111  0       
10 t_test_log2cpm_quant 250   0.00112  0       
11 wilcoxon             50    0.00087  0       
12 wilcoxon             250   0.00122  0.001   

histogram of unadjusted p-value of one dataset

tmp <- subset(res_merge, n1==50) %>%
  group_by(seed, method) %>%
  summarise(type1=mean(pval < .001, na.rm=T)) 
tmp[which.max(tmp$type1),]
# A tibble: 1 x 3
# Groups:   seed [1]
   seed method type1
  <int> <fct>  <dbl>
1    90 edger   0.02
tmp[tmp$seed==90,]
# A tibble: 6 x 3
# Groups:   seed [1]
   seed method                type1
  <int> <fct>                 <dbl>
1    90 deseq2               0.0148
2    90 edger                0.02  
3    90 limma_voom           0.007 
4    90 t_test               0.001 
5    90 t_test_log2cpm_quant 0.012 
6    90 wilcoxon             0.002 
subset(res_merge, n1==50 & seed==90) %>% #filter(n1==args$n1) %>% 
  group_by(method) %>%
  summarise(type1=mean(pval<.001, na.rm=T), nvalid=sum(!is.na(pval)))  
# A tibble: 6 x 3
  method                type1 nvalid
  <fct>                 <dbl>  <int>
1 deseq2               0.0148    949
2 edger                0.02     1000
3 limma_voom           0.007    1000
4 t_test               0.001    1000
5 t_test_log2cpm_quant 0.012    1000
6 wilcoxon             0.002    1000
subset(res_merge, n1==50 & seed==90) %>%
  ggplot(., aes(x=pval)) +
  geom_histogram(bins=30) +
  facet_wrap(~method)

Version Author Date
3fe797f Joyce Hsiao 2019-05-01

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] cowplot_0.9.4   forcats_0.3.0   stringr_1.3.1   dplyr_0.8.0.1  
 [5] purrr_0.3.2     readr_1.3.1     tidyr_0.8.3     tibble_2.1.1   
 [9] ggplot2_3.1.0   tidyverse_1.2.1 dscrutils_0.3.8

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.5   haven_1.1.2        lattice_0.20-38   
 [4] colorspace_1.3-2   generics_0.0.2     htmltools_0.3.6   
 [7] yaml_2.2.0         utf8_1.1.4         rlang_0.3.4       
[10] pillar_1.3.1       glue_1.3.0         withr_2.1.2       
[13] RColorBrewer_1.1-2 modelr_0.1.2       readxl_1.1.0      
[16] plyr_1.8.4         munsell_0.5.0      gtable_0.2.0      
[19] workflowr_1.3.0    cellranger_1.1.0   rvest_0.3.2       
[22] evaluate_0.12      labeling_0.3       knitr_1.20        
[25] fansi_0.4.0        broom_0.5.1        Rcpp_1.0.1        
[28] scales_1.0.0       backports_1.1.2    jsonlite_1.6      
[31] fs_1.2.6           hms_0.4.2          digest_0.6.18     
[34] stringi_1.2.4      grid_3.5.1         rprojroot_1.3-2   
[37] cli_1.0.1          tools_3.5.1        magrittr_1.5      
[40] lazyeval_0.2.1     crayon_1.3.4       whisker_0.3-2     
[43] pkgconfig_2.0.2    xml2_1.2.0         lubridate_1.7.4   
[46] assertthat_0.2.0   rmarkdown_1.10     httr_1.3.1        
[49] rstudioapi_0.10    R6_2.4.0           nlme_3.1-137      
[52] git2r_0.23.0       compiler_3.5.1