Last updated: 2022-02-22

Checks: 7 0

Knit directory: scATACseq-topics/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it's best to always run the code in an empty environment.

The command set.seed(20200729) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d8d9892. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    output/plotly/Buenrostro_2018_Chen2019pipeline/
    Ignored:    output/plotly/Buenrostro_2018_Chen2019pipeline_v2/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_10_genebody-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_10_genebody-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_10_genebody-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_10_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_10_genebody-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_10_tss-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_10_tss-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_10_tss-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_10_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_10_tss-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_11_genebody-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_11_genebody-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_11_genebody-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_11_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_11_genebody-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_11_tss-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_11_tss-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_11_tss-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_11_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_11_tss-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_12_genebody-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_12_genebody-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_12_genebody-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_12_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_12_genebody-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_12_tss-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_12_tss-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_12_tss-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_12_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_12_tss-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_13_genebody-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_13_genebody-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_13_genebody-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_13_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_13_genebody-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_13_tss-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_13_tss-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_13_tss-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_13_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_13_tss-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_1_genebody-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_1_genebody-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_1_genebody-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_1_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_1_genebody-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_1_tss-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_1_tss-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_1_tss-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_1_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_1_tss-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_2_genebody-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_2_genebody-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_2_genebody-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_2_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_2_genebody-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_2_tss-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_2_tss-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_2_tss-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_2_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_2_tss-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_3_genebody-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_3_genebody-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_3_genebody-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_3_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_3_genebody-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_3_tss-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_3_tss-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_3_tss-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_3_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_3_tss-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_4_genebody-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_4_genebody-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_4_genebody-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_4_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_4_genebody-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_4_tss-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_4_tss-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_4_tss-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_4_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_4_tss-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_5_genebody-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_5_genebody-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_5_genebody-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_5_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_5_genebody-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_5_tss-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_5_tss-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_5_tss-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_5_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_5_tss-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_6_genebody-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_6_genebody-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_6_genebody-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_6_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_6_genebody-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_6_tss-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_6_tss-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_6_tss-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_6_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_6_tss-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_7_genebody-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_7_genebody-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_7_genebody-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_7_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_7_genebody-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_7_tss-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_7_tss-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_7_tss-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_7_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_7_tss-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_8_genebody-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_8_genebody-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_8_genebody-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_8_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_8_genebody-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_8_tss-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_8_tss-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_8_tss-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_8_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_8_tss-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_9_genebody-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_9_genebody-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_9_genebody-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_9_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_9_genebody-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_9_tss-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_9_tss-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_9_tss-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_9_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/gsea_topic_9_tss-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_10_genebody-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_10_genebody-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_10_genebody-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_10_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_10_genebody-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_10_tss-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_10_tss-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_10_tss-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_10_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_10_tss-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_11_genebody-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_11_genebody-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_11_genebody-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_11_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_11_genebody-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_11_tss-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_11_tss-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_11_tss-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_11_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_11_tss-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_12_genebody-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_12_genebody-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_12_genebody-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_12_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_12_genebody-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_12_tss-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_12_tss-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_12_tss-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_12_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_12_tss-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_13_genebody-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_13_genebody-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_13_genebody-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_13_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_13_genebody-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_13_tss-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_13_tss-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_13_tss-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_13_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_13_tss-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_1_genebody-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_1_genebody-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_1_genebody-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_1_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_1_genebody-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_1_tss-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_1_tss-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_1_tss-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_1_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_1_tss-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_2_genebody-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_2_genebody-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_2_genebody-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_2_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_2_genebody-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_2_tss-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_2_tss-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_2_tss-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_2_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_2_tss-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_3_genebody-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_3_genebody-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_3_genebody-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_3_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_3_genebody-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_3_tss-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_3_tss-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_3_tss-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_3_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_3_tss-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_4_genebody-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_4_genebody-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_4_genebody-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_4_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_4_genebody-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_4_tss-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_4_tss-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_4_tss-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_4_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_4_tss-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_5_genebody-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_5_genebody-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_5_genebody-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_5_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_5_genebody-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_5_tss-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_5_tss-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_5_tss-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_5_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_5_tss-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_6_genebody-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_6_genebody-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_6_genebody-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_6_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_6_genebody-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_6_tss-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_6_tss-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_6_tss-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_6_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_6_tss-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_7_genebody-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_7_genebody-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_7_genebody-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_7_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_7_genebody-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_7_tss-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_7_tss-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_7_tss-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_7_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_7_tss-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_8_genebody-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_8_genebody-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_8_genebody-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_8_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_8_genebody-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_8_tss-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_8_tss-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_8_tss-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_8_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_8_tss-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_9_genebody-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_9_genebody-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_9_genebody-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_9_genebody-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_9_genebody-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_9_tss-sum_files/crosstalk-1.1.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_9_tss-sum_files/jquery-3.5.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_9_tss-sum_files/plotly-binding-4.9.3/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_9_tss-sum_files/plotly-htmlwidgets-css-1.57.1/
    Ignored:    output/plotly/Cusanovich2018/volcano_topic_9_tss-sum_files/plotly-main-1.57.1/
    Ignored:    output/plotly/Cusanovich2018_v2/

Untracked files:
    Untracked:  analysis/analysis_Buenrostro2018_k10.Rmd
    Untracked:  analysis/clusters_Buenrostro2018_k10_Chen2019pipeline.Rmd
    Untracked:  analysis/process_data_Buenrostro2018_Chen2019.Rmd
    Untracked:  analysis/selected_figures_Buenrostro2018.Rmd
    Untracked:  analysis/test_structure_plots_Buenrostro2018_k11_Chen2019pipeline.Rmd
    Untracked:  gsea_b_cells.html
    Untracked:  output/clustering-Cusanovich2018.rds
    Untracked:  paper/
    Untracked:  scripts/fit_all_models_Buenrostro_2018_chromVar_scPeaks_filtered.sbatch
    Untracked:  scripts/fit_models_Cusanovich2018_tissues.sh
    Untracked:  scripts/postfit_Buenrostro2018_Chen2019pipeline_v2.sh
    Untracked:  scripts/postfit_Cusanovich2018_v2.sh
    Untracked:  scripts/postfit_DA_analysis.sbatch
    Untracked:  topic1.html

Unstaged changes:
    Modified:   .gitignore
    Modified:   analysis/clusters_Cusanovich2018_k13.Rmd
    Modified:   analysis/gene_analysis_Buenrostro2018_Chen2019pipeline.Rmd
    Modified:   analysis/gene_analysis_Cusanovich2018.Rmd
    Modified:   analysis/motif_analysis_Buenrostro2018_Chen2019pipeline.Rmd
    Modified:   analysis/motif_analysis_Buenrostro2018_Chen2019pipeline_v2.Rmd
    Modified:   analysis/motif_analysis_Cusanovich2018.Rmd
    Modified:   analysis/plots_Cusanovich2018.Rmd
    Modified:   analysis/process_data_Cusanovich2018.Rmd
    Modified:   code/functions_for_assessing_fits.R
    Modified:   code/plots.R
    Modified:   output/plotly/Cusanovich2018/gsea_topic_10_genebody-sum.html
    Modified:   output/plotly/Cusanovich2018/gsea_topic_10_tss-sum.html
    Modified:   output/plotly/Cusanovich2018/gsea_topic_11_genebody-sum.html
    Modified:   output/plotly/Cusanovich2018/gsea_topic_11_tss-sum.html
    Modified:   output/plotly/Cusanovich2018/gsea_topic_12_genebody-sum.html
    Modified:   output/plotly/Cusanovich2018/gsea_topic_12_tss-sum.html
    Modified:   output/plotly/Cusanovich2018/gsea_topic_13_genebody-sum.html
    Modified:   output/plotly/Cusanovich2018/gsea_topic_13_tss-sum.html
    Modified:   output/plotly/Cusanovich2018/gsea_topic_1_genebody-sum.html
    Modified:   output/plotly/Cusanovich2018/gsea_topic_1_tss-sum.html
    Modified:   output/plotly/Cusanovich2018/gsea_topic_2_genebody-sum.html
    Modified:   output/plotly/Cusanovich2018/gsea_topic_2_tss-sum.html
    Modified:   output/plotly/Cusanovich2018/gsea_topic_3_genebody-sum.html
    Modified:   output/plotly/Cusanovich2018/gsea_topic_3_tss-sum.html
    Modified:   output/plotly/Cusanovich2018/gsea_topic_4_genebody-sum.html
    Modified:   output/plotly/Cusanovich2018/gsea_topic_4_tss-sum.html
    Modified:   output/plotly/Cusanovich2018/gsea_topic_5_genebody-sum.html
    Modified:   output/plotly/Cusanovich2018/gsea_topic_5_tss-sum.html
    Modified:   output/plotly/Cusanovich2018/gsea_topic_6_genebody-sum.html
    Modified:   output/plotly/Cusanovich2018/gsea_topic_6_tss-sum.html
    Modified:   output/plotly/Cusanovich2018/gsea_topic_7_genebody-sum.html
    Modified:   output/plotly/Cusanovich2018/gsea_topic_7_tss-sum.html
    Modified:   output/plotly/Cusanovich2018/gsea_topic_8_genebody-sum.html
    Modified:   output/plotly/Cusanovich2018/gsea_topic_8_tss-sum.html
    Modified:   output/plotly/Cusanovich2018/gsea_topic_9_genebody-sum.html
    Modified:   output/plotly/Cusanovich2018/gsea_topic_9_tss-sum.html
    Modified:   output/plotly/Cusanovich2018/volcano_topic_10_genebody-sum.html
    Modified:   output/plotly/Cusanovich2018/volcano_topic_10_tss-sum.html
    Modified:   output/plotly/Cusanovich2018/volcano_topic_11_genebody-sum.html
    Modified:   output/plotly/Cusanovich2018/volcano_topic_11_tss-sum.html
    Modified:   output/plotly/Cusanovich2018/volcano_topic_12_genebody-sum.html
    Modified:   output/plotly/Cusanovich2018/volcano_topic_12_tss-sum.html
    Modified:   output/plotly/Cusanovich2018/volcano_topic_13_genebody-sum.html
    Modified:   output/plotly/Cusanovich2018/volcano_topic_13_tss-sum.html
    Modified:   output/plotly/Cusanovich2018/volcano_topic_1_genebody-sum.html
    Modified:   output/plotly/Cusanovich2018/volcano_topic_1_tss-sum.html
    Modified:   output/plotly/Cusanovich2018/volcano_topic_2_genebody-sum.html
    Modified:   output/plotly/Cusanovich2018/volcano_topic_2_tss-sum.html
    Modified:   output/plotly/Cusanovich2018/volcano_topic_3_genebody-sum.html
    Modified:   output/plotly/Cusanovich2018/volcano_topic_3_tss-sum.html
    Modified:   output/plotly/Cusanovich2018/volcano_topic_4_genebody-sum.html
    Modified:   output/plotly/Cusanovich2018/volcano_topic_4_tss-sum.html
    Modified:   output/plotly/Cusanovich2018/volcano_topic_5_genebody-sum.html
    Modified:   output/plotly/Cusanovich2018/volcano_topic_5_tss-sum.html
    Modified:   output/plotly/Cusanovich2018/volcano_topic_6_genebody-sum.html
    Modified:   output/plotly/Cusanovich2018/volcano_topic_6_tss-sum.html
    Modified:   output/plotly/Cusanovich2018/volcano_topic_7_genebody-sum.html
    Modified:   output/plotly/Cusanovich2018/volcano_topic_7_tss-sum.html
    Modified:   output/plotly/Cusanovich2018/volcano_topic_8_genebody-sum.html
    Modified:   output/plotly/Cusanovich2018/volcano_topic_8_tss-sum.html
    Modified:   output/plotly/Cusanovich2018/volcano_topic_9_genebody-sum.html
    Modified:   output/plotly/Cusanovich2018/volcano_topic_9_tss-sum.html
    Modified:   scripts/fit_all_models_Cusanovich2018.sh
    Modified:   scripts/postfit_Buenrostro2018_Chen2019pipeline.sh
    Modified:   scripts/postfit_Cusanovich2018.sh
    Modified:   scripts/postfit_gene_analysis.sbatch

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/gene_analysis_Buenrostro2018_Chen2019pipeline_v2.Rmd) and HTML (docs/gene_analysis_Buenrostro2018_Chen2019pipeline_v2.html) files. If you've configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd d8d9892 kevinlkx 2022-02-22 added gene volcano plots
html d3c0891 kevinlkx 2022-02-16 Build site.
Rmd e297a8a kevinlkx 2022-02-16 updated with v2 of DA analysis result
html f524d5a kevinlkx 2022-02-16 Build site.
Rmd c6d4883 kevinlkx 2022-02-16 updated with v2 of DA analysis result

Here we perform TF motif and gene analysis for the Buenrostro et al (2018) scATAC-seq result inferred from the multinomial topic model with \(k = 11\).

We use binarized scPeaks and scATAC-seq data was processed using Chen et al (2019) pipeline.

Load packages and some functions used in this analysis

library(Matrix)
library(fastTopics)
library(dplyr)
library(tidyr)
library(ggplot2)
library(ggrepel)
library(cowplot)
library(plotly)
library(htmlwidgets)
library(DT)
library(reshape)
library(pathways)

source("code/plots.R")

Load data and topic model results

Load the binarized data and the \(k = 11\) Poisson NMF fit results

data.dir <- "/project2/mstephens/kevinluo/scATACseq-topics/data/Buenrostro_2018/processed_data_Chen2019pipeline/"
load(file.path(data.dir, "Buenrostro_2018_binarized_counts.RData"))
cat(sprintf("%d x %d counts matrix.\n",nrow(counts),ncol(counts)))
# 2034 x 101172 counts matrix.
fit.dir <- "/project2/mstephens/kevinluo/scATACseq-topics/output/Buenrostro_2018_Chen2019pipeline/binarized/"
fit <- readRDS(file.path(fit.dir, "/fit-Buenrostro2018-binarized-scd-ex-k=11.rds"))$fit
fit <- poisson2multinom(fit)

Visualize by Structure plot grouped by cell labels.

set.seed(10)
colors_topics <- c("#a6cee3","#1f78b4","#b2df8a","#33a02c","#fb9a99","#e31a1c",
                   "#fdbf6f","#ff7f00","#cab2d6","#6a3d9a","#ffff99","#b15928",
                   "gray")
samples$label <- as.factor(samples$label)

p.structure <- structure_plot(fit,
                     grouping = samples[, "label"],n = Inf,gap = 40,
                     perplexity = 50,colors = colors_topics,
                     num_threads = 6,verbose = FALSE)

print(p.structure)

Version Author Date
f524d5a kevinlkx 2022-02-16

Differential accessbility analysis of the ATAC-seq regions for the topics

Load results from differential accessbility analysis for the topics

out.dir <- "/project2/mstephens/kevinluo/scATACseq-topics/output/Buenrostro_2018_Chen2019pipeline/binarized/postfit_v2"
cat(sprintf("Load results from %s \n", out.dir))
DA_res <- readRDS(file.path(out.dir, paste0("DAanalysis-Buenrostro2018-k=11/DA_regions_topics_10000iters.rds")))
# Load results from /project2/mstephens/kevinluo/scATACseq-topics/output/Buenrostro_2018_Chen2019pipeline/binarized/postfit_v2

Volcano plot of the regions

m <- ncol(DA_res$z)
plots <- vector("list",m)
names(plots) <- colnames(DA_res$z)
for (k in 1:m) {
  plots[[k]] <- volcano_plot(DA_res, k = k,labels = rep("",nrow(DA_res$z)))
}
do.call(plot_grid, plots)

Version Author Date
f524d5a kevinlkx 2022-02-16

Gene score analysis

Set output directorry

out.dir <- "/project2/mstephens/kevinluo/scATACseq-topics/output/Buenrostro_2018_Chen2019pipeline/binarized/postfit_v2"

fig.dir <- "output/plotly/Buenrostro_2018_Chen2019pipeline_v2/"
dir.create(fig.dir, showWarnings = F, recursive = T)

TSS model version 1

Gene scores were computed using TSS based method as in Lareau et al Nature Biotech, 2019 as well as the model 21 in archR paper. This model weights chromatin accessibility around gene promoters by using bi-directional exponential decays from the TSS.

  • TSS model, normalized by the l2 norm of weights, as in Stouffer's z-score method
  • use abs(z) scores
gene.dir <- paste0(out.dir, "/geneanalysis-Buenrostro2018-k=11-TSS-absZ-l2")

cat(sprintf("Directory of gene analysis result: %s \n", gene.dir))
genescore_res <- readRDS(file.path(gene.dir, "genescore_result.rds"))

genes <- genescore_res$genes
gene_scores <- genescore_res$Z
gene_logFC <- genescore_res$logFC

topics <- colnames(gene_scores)
top_genes <- data.frame(matrix(nrow=10, ncol = ncol(gene_scores)))
colnames(top_genes) <- topics

for (k in topics){
  top_genes[,k] <- genes$SYMBOL[head(order(abs(gene_scores[,k]), decreasing=TRUE), 10)]
}

DT::datatable(data.frame(rank = 1:10, top_genes), rownames = F, caption = "Top 10 genes by abs(gene z-scores)")
# Directory of gene analysis result: /project2/mstephens/kevinluo/scATACseq-topics/output/Buenrostro_2018_Chen2019pipeline/binarized/postfit_v2/geneanalysis-Buenrostro2018-k=11-TSS-absZ-l2
  • Volcano plots of gene scores

all topics

genescore_volcano_plot(genescore_res, label_above_quantile = 0.99,
                       labels = genescore_res$genes$SYMBOL, max.overlaps = 20,
                       subsample_below_quantile = 0.5, subsample_rate = 0.1)

topic 1 and topic 4 examples

p.volcano.1 <- genescore_volcano_plot(genescore_res, k = 1, label_above_quantile = 0.99,
                       labels = genescore_res$genes$SYMBOL, max.overlaps = 20,
                       subsample_below_quantile = 0.5, subsample_rate = 0.1)

p.volcano.4 <- genescore_volcano_plot(genescore_res, k=4, label_above_quantile = 0.99,
                       labels = genescore_res$genes$SYMBOL, max.overlaps = 20,
                       subsample_below_quantile = 0.5, subsample_rate = 0.1)

plot_grid(p.volcano.1, p.volcano.4)

TSS model version 2

Gene scores were computed using TSS based method as in Lareau et al Nature Biotech, 2019 as well as the model 21 in archR paper. This model weights chromatin accessibility around gene promoters by using bi-directional exponential decays from the TSS.

  • TSS model, normalized by the sum of weights
  • use abs(z) scores
gene.dir <- paste0(out.dir, "/geneanalysis-Buenrostro2018-k=11-TSS-absZ-sum")

cat(sprintf("Directory of gene analysis result: %s \n", gene.dir))
genescore_res <- readRDS(file.path(gene.dir, "genescore_result.rds"))

genes <- genescore_res$genes
gene_scores <- genescore_res$Z
gene_logFC <- genescore_res$logFC

topics <- colnames(gene_scores)
top_genes <- data.frame(matrix(nrow=10, ncol = ncol(gene_scores)))
colnames(top_genes) <- topics

for (k in topics){
  top_genes[,k] <- genes$SYMBOL[head(order(abs(gene_scores[,k]), decreasing=TRUE), 10)]
}

DT::datatable(data.frame(rank = 1:10, top_genes), rownames = F, caption = "Top 10 genes by abs(gene z-scores)")
# Directory of gene analysis result: /project2/mstephens/kevinluo/scATACseq-topics/output/Buenrostro_2018_Chen2019pipeline/binarized/postfit_v2/geneanalysis-Buenrostro2018-k=11-TSS-absZ-sum
  • Volcano plots of gene scores

all topics

genescore_volcano_plot(genescore_res, label_above_quantile = 0.99,
                       labels = genescore_res$genes$SYMBOL, max.overlaps = 20,
                       subsample_below_quantile = 0.5, subsample_rate = 0.1)

topic 1 and topic 4 examples

p.volcano.1 <- genescore_volcano_plot(genescore_res, k = 1, label_above_quantile = 0.99,
                       labels = genescore_res$genes$SYMBOL, max.overlaps = 20,
                       subsample_below_quantile = 0.5, subsample_rate = 0.1)

p.volcano.4 <- genescore_volcano_plot(genescore_res, k=4, label_above_quantile = 0.99,
                       labels = genescore_res$genes$SYMBOL, max.overlaps = 20,
                       subsample_below_quantile = 0.5, subsample_rate = 0.1)

plot_grid(p.volcano.1, p.volcano.4)

Gene body model version 1

Gene scores were computed using the gene score model (model 42) in the archR paper with some modifications. This model uses bi-directional exponential decays from the gene TSS (extended upstream by 5 kb by default) and the gene transcription termination site (TTS). Note: the current version of the function does not account for neighboring gene boundaries.

  • Gene body model, normalized by the l2 norm of weights, as in Stouffer's z-score method
  • use abs(z) scores
gene.dir <- paste0(out.dir, "/geneanalysis-Buenrostro2018-k=11-genebody-Z-l2")
cat(sprintf("Directory of gene analysis result: %s \n", gene.dir))
genescore_res <- readRDS(file.path(gene.dir, "genescore_result.rds"))

genes <- genescore_res$genes
gene_scores <- genescore_res$Z
gene_logFC <- genescore_res$logFC

topics <- colnames(gene_scores)
top_genes <- data.frame(matrix(nrow=10, ncol = ncol(gene_scores)))
colnames(top_genes) <- topics

for (k in topics){
  top_genes[,k] <- genes$SYMBOL[head(order(abs(gene_scores[,k]), decreasing=TRUE), 10)]
}

DT::datatable(data.frame(rank = 1:10, top_genes), rownames = F, caption = "Top 10 genes by abs(gene z-scores)")
# Directory of gene analysis result: /project2/mstephens/kevinluo/scATACseq-topics/output/Buenrostro_2018_Chen2019pipeline/binarized/postfit_v2/geneanalysis-Buenrostro2018-k=11-genebody-Z-l2
  • Volcano plots of gene scores

all topics

genescore_volcano_plot(genescore_res, label_above_quantile = 0.99,
                       labels = genescore_res$genes$SYMBOL, max.overlaps = 20,
                       subsample_below_quantile = 0.5, subsample_rate = 0.1)

topic 1 and topic 4 examples

p.volcano.1 <- genescore_volcano_plot(genescore_res, k = 1, label_above_quantile = 0.99,
                       labels = genescore_res$genes$SYMBOL, max.overlaps = 20,
                       subsample_below_quantile = 0.5, subsample_rate = 0.1)

p.volcano.4 <- genescore_volcano_plot(genescore_res, k=4, label_above_quantile = 0.99,
                       labels = genescore_res$genes$SYMBOL, max.overlaps = 20,
                       subsample_below_quantile = 0.5, subsample_rate = 0.1)

plot_grid(p.volcano.1, p.volcano.4)

Gene body model version 2

Gene scores were computed using the gene score model (model 42) in the archR paper with some modifications. This model uses bi-directional exponential decays from the gene TSS (extended upstream by 5 kb by default) and the gene transcription termination site (TTS). Note: the current version of the function does not account for neighboring gene boundaries.

  • Gene body model, normalized by the sum of weights
  • use abs(z) scores
gene.dir <- paste0(out.dir, "/geneanalysis-Buenrostro2018-k=11-genebody-Z-sum")
cat(sprintf("Directory of gene analysis result: %s \n", gene.dir))
genescore_res <- readRDS(file.path(gene.dir, "genescore_result.rds"))

genes <- genescore_res$genes
gene_scores <- genescore_res$Z
gene_logFC <- genescore_res$logFC

topics <- colnames(gene_scores)
top_genes <- data.frame(matrix(nrow=10, ncol = ncol(gene_scores)))
colnames(top_genes) <- topics

for (k in topics){
  top_genes[,k] <- genes$SYMBOL[head(order(abs(gene_scores[,k]), decreasing=TRUE), 10)]
}

DT::datatable(data.frame(rank = 1:10, top_genes), rownames = F, caption = "Top 10 genes by abs(gene z-scores)")
# Directory of gene analysis result: /project2/mstephens/kevinluo/scATACseq-topics/output/Buenrostro_2018_Chen2019pipeline/binarized/postfit_v2/geneanalysis-Buenrostro2018-k=11-genebody-Z-sum
  • Volcano plots of gene scores

all topics

genescore_volcano_plot(genescore_res, label_above_quantile = 0.99,
                       labels = genescore_res$genes$SYMBOL, max.overlaps = 20,
                       subsample_below_quantile = 0.5, subsample_rate = 0.1)

topic 1 and topic 4 examples

p.volcano.1 <- genescore_volcano_plot(genescore_res, k = 1, label_above_quantile = 0.99,
                       labels = genescore_res$genes$SYMBOL, max.overlaps = 20,
                       subsample_below_quantile = 0.5, subsample_rate = 0.1)

p.volcano.4 <- genescore_volcano_plot(genescore_res, k=4, label_above_quantile = 0.99,
                       labels = genescore_res$genes$SYMBOL, max.overlaps = 20,
                       subsample_below_quantile = 0.5, subsample_rate = 0.1)

plot_grid(p.volcano.1, p.volcano.4)

Gene-set enrichment analysis (GSEA)

Loading gene set data

cat("Loading human gene set data.\n")
data(gene_sets_human)
gene_sets <- gene_sets_human$gene_sets
gene_set_info <- gene_sets_human$gene_set_info
# Loading human gene set data.
gene.dir <- paste0(out.dir, "/geneanalysis-Buenrostro2018-k=11-TSS-absZ-l2")
cat(sprintf("Directory of gene analysis result: %s \n", gene.dir))
gsea_res <- readRDS(file.path(gene.dir, "gsea_result.rds"))

top_pathways_up <- top_pathways_down <- data.frame(matrix(nrow=10, ncol = ncol(gsea_res$pval)))
colnames(top_pathways_up) <- colnames(top_pathways_down) <- colnames(gsea_res$pval)

for (k in 1:ncol(gsea_res$pval)){
  gsea_topic <- data.frame(pathway = rownames(gsea_res$pval),  
                           pval = gsea_res$pval[,k],
                           log2err = gsea_res$log2err[,k],
                           ES = gsea_res$ES[,k],
                           NES = gsea_res$NES[,k])
  gsea_up <- gsea_topic[gsea_topic$ES > 0,]
  top_IDs_up <- as.character(gsea_up[head(order(gsea_up$pval), 10), "pathway"])
  top_IDs_up <- gene_set_info[match(top_IDs_up, gene_set_info$id),c("name", "id")]
  top_pathways_up[,k] <- paste0(top_IDs_up$name, "(", top_IDs_up$id, ")")
  
  gsea_down <- gsea_topic[gsea_topic$ES < 0,]
  top_IDs_down <- as.character(gsea_down[head(order(gsea_down$pval), 10), "pathway"])
  top_IDs_down <- gene_set_info[match(top_IDs_down, gene_set_info$id),c("name", "id")]
  top_pathways_down[,k] <- paste0(top_IDs_down$name, "(", top_IDs_down$id, ")")
  
}

DT::datatable(data.frame(rank = 1:10, top_pathways_up), rownames = F,
              caption = "Top 10 pathways enriched at the top of the gene rank list.")
# Directory of gene analysis result: /project2/mstephens/kevinluo/scATACseq-topics/output/Buenrostro_2018_Chen2019pipeline/binarized/postfit_v2/geneanalysis-Buenrostro2018-k=11-TSS-absZ-l2
gene.dir <- paste0(out.dir, "/geneanalysis-Buenrostro2018-k=11-genebody-absZ-l2")
cat(sprintf("Directory of gene analysis result: %s \n", gene.dir))
gsea_res <- readRDS(file.path(gene.dir, "gsea_result.rds"))

top_pathways_up <- top_pathways_down <- data.frame(matrix(nrow=10, ncol = ncol(gsea_res$pval)))
colnames(top_pathways_up) <- colnames(top_pathways_down) <- colnames(gsea_res$pval)

for (k in 1:ncol(gsea_res$pval)){
  gsea_topic <- data.frame(pathway = rownames(gsea_res$pval),  
                           pval = gsea_res$pval[,k],
                           log2err = gsea_res$log2err[,k],
                           ES = gsea_res$ES[,k],
                           NES = gsea_res$NES[,k])
  gsea_up <- gsea_topic[gsea_topic$ES > 0,]
  top_IDs_up <- as.character(gsea_up[head(order(gsea_up$pval), 10), "pathway"])
  top_IDs_up <- gene_set_info[match(top_IDs_up, gene_set_info$id),c("name", "id")]
  top_pathways_up[,k] <- paste0(top_IDs_up$name, "(", top_IDs_up$id, ")")
  
  gsea_down <- gsea_topic[gsea_topic$ES < 0,]
  top_IDs_down <- as.character(gsea_down[head(order(gsea_down$pval), 10), "pathway"])
  top_IDs_down <- gene_set_info[match(top_IDs_down, gene_set_info$id),c("name", "id")]
  top_pathways_down[,k] <- paste0(top_IDs_down$name, "(", top_IDs_down$id, ")")
  
}

DT::datatable(data.frame(rank = 1:10, top_pathways_up), rownames = F,
              caption = "Top 10 pathways enriched at the top of the gene rank list.")
# Directory of gene analysis result: /project2/mstephens/kevinluo/scATACseq-topics/output/Buenrostro_2018_Chen2019pipeline/binarized/postfit_v2/geneanalysis-Buenrostro2018-k=11-genebody-absZ-l2

sessionInfo()
# R version 4.0.4 (2021-02-15)
# Platform: x86_64-pc-linux-gnu (64-bit)
# Running under: Scientific Linux 7.4 (Nitrogen)
# 
# Matrix products: default
# BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so
# 
# locale:
#  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
#  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
#  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
#  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
# [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
# 
# attached base packages:
# [1] stats     graphics  grDevices utils     datasets  methods   base     
# 
# other attached packages:
#  [1] pathways_0.1-20   reshape_0.8.8     DT_0.20           htmlwidgets_1.5.4
#  [5] plotly_4.10.0     cowplot_1.1.1     ggrepel_0.9.1     ggplot2_3.3.5    
#  [9] tidyr_1.1.4       dplyr_1.0.7       fastTopics_0.6-97 Matrix_1.4-0     
# [13] workflowr_1.7.0  
# 
# loaded via a namespace (and not attached):
#   [1] fgsea_1.21.0         Rtsne_0.15           colorspace_2.0-2    
#   [4] ellipsis_0.3.2       class_7.3-20         rprojroot_2.0.2     
#   [7] fs_1.5.2             rstudioapi_0.13      farver_2.1.0        
#  [10] listenv_0.8.0        MatrixModels_0.5-0   prodlim_2019.11.13  
#  [13] fansi_1.0.2          lubridate_1.8.0      codetools_0.2-18    
#  [16] splines_4.0.4        knitr_1.37           jsonlite_1.7.3      
#  [19] pROC_1.18.0          mcmc_0.9-7           caret_6.0-90        
#  [22] ashr_2.2-47          uwot_0.1.11          compiler_4.0.4      
#  [25] httr_1.4.2           assertthat_0.2.1     fastmap_1.1.0       
#  [28] lazyeval_0.2.2       cli_3.1.1            later_1.3.0         
#  [31] prettyunits_1.1.1    htmltools_0.5.2      quantreg_5.86       
#  [34] tools_4.0.4          coda_0.19-4          gtable_0.3.0        
#  [37] glue_1.6.1           reshape2_1.4.4       fastmatch_1.1-3     
#  [40] Rcpp_1.0.8           jquerylib_0.1.4      vctrs_0.3.8         
#  [43] nlme_3.1-155         conquer_1.2.1        crosstalk_1.2.0     
#  [46] iterators_1.0.13     timeDate_3043.102    gower_0.2.2         
#  [49] xfun_0.29            stringr_1.4.0        globals_0.14.0      
#  [52] ps_1.6.0             lifecycle_1.0.1      irlba_2.3.5         
#  [55] future_1.23.0        getPass_0.2-2        MASS_7.3-55         
#  [58] scales_1.1.1         ipred_0.9-12         hms_1.1.1           
#  [61] promises_1.2.0.1     parallel_4.0.4       SparseM_1.81        
#  [64] yaml_2.2.2           gridExtra_2.3        pbapply_1.5-0       
#  [67] sass_0.4.0           rpart_4.1-15         stringi_1.7.6       
#  [70] SQUAREM_2021.1       highr_0.9            foreach_1.5.1       
#  [73] BiocParallel_1.24.1  lava_1.6.10          truncnorm_1.0-8     
#  [76] rlang_1.0.0          pkgconfig_2.0.3      matrixStats_0.61.0  
#  [79] evaluate_0.14        lattice_0.20-45      invgamma_1.1        
#  [82] purrr_0.3.4          labeling_0.4.2       recipes_0.1.17      
#  [85] processx_3.5.2       tidyselect_1.1.1     parallelly_1.30.0   
#  [88] plyr_1.8.6           magrittr_2.0.2       R6_2.5.1            
#  [91] generics_0.1.1       DBI_1.1.2            pillar_1.6.5        
#  [94] whisker_0.4          withr_2.4.3          survival_3.2-13     
#  [97] mixsqp_0.3-43        nnet_7.3-17          tibble_3.1.6        
# [100] future.apply_1.8.1   crayon_1.4.2         utf8_1.2.2          
# [103] rmarkdown_2.11       progress_1.2.2       grid_4.0.4          
# [106] data.table_1.14.2    callr_3.7.0          git2r_0.29.0        
# [109] ModelMetrics_1.2.2.2 digest_0.6.29        httpuv_1.6.5        
# [112] MCMCpack_1.6-0       RcppParallel_5.1.5   stats4_4.0.4        
# [115] munsell_0.5.0        viridisLite_0.4.0    bslib_0.3.1         
# [118] quadprog_1.5-8