Last updated: 2021-01-22
Checks: 7 0
Knit directory: scATACseq-topics/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it's best to always run the code in an empty environment.
The command set.seed(20200729)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 8f3685f. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Untracked files:
Untracked: analysis/diff_count_Buenrostro2018_chomVAR_scPeaks.Rmd
Untracked: analysis/process_data_Buenrostro2018_Chen2019.Rmd
Untracked: analysis/single_cell_rnaseq_demo.Rmd
Untracked: output/Cusanovich2018/
Untracked: output/clustering-Cusanovich2018.rds
Untracked: output/gsea_topic_1_Cusanovich2018-k=13-TSS-sum.html
Untracked: output/gsea_topic_1_Cusanovich2018-k=13-TSS-sum.png
Untracked: output/gsea_topic_1_Cusanovich2018-k=13-TSS-sum_files/
Untracked: output/gsea_topic_1_Cusanovich2018-k=13-genebody-sum.html
Untracked: output/gsea_topic_1_Cusanovich2018-k=13-genebody-sum.png
Untracked: output/gsea_topic_1_Cusanovich2018-k=13-genebody-sum_files/
Untracked: output/plotly/
Untracked: output/volcano_topic_1_Cusanovich2018-k=13-TSS-sum.html
Untracked: output/volcano_topic_1_Cusanovich2018-k=13-TSS-sum.png
Untracked: output/volcano_topic_1_Cusanovich2018-k=13-TSS-sum_files/
Untracked: output/volcano_topic_1_Cusanovich2018-k=13-genebody-sum.html
Untracked: output/volcano_topic_1_Cusanovich2018-k=13-genebody-sum.png
Untracked: output/volcano_topic_1_Cusanovich2018-k=13-genebody-sum_files/
Untracked: scripts/fit_all_models_Buenrostro_2018_chromVar_scPeaks_filtered.sbatch
Unstaged changes:
Modified: analysis/cisTopic_Buenrostro2018_chomVAR_scPeaks.Rmd
Modified: analysis/motif_gene_analysis_Cusanovich2018.Rmd
Modified: analysis/plots_Lareau2019_bonemarrow.Rmd
Modified: scripts/fit_all_models_Buenrostro_2018.sbatch
Modified: scripts/fit_cisTopic_Buenrostro_2018_chromVAR_scPeaks.sh
Modified: scripts/postfit_Buenrostro2018.sh
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/gene_analysis_Cusanovich2018.Rmd
) and HTML (docs/gene_analysis_Cusanovich2018.html
) files. If you've configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 8f3685f | kevinlkx | 2021-01-22 | update figure directory and links to plotly html files |
Here we perform gene analysis for the Cusanovich et al (2018) scATAC-seq result inferred from the multinomial topic model with \(k = 13\).
library(Matrix)
library(fastTopics)
library(dplyr)
library(tidyr)
library(ggplot2)
library(ggrepel)
library(cowplot)
library(plotly)
library(htmlwidgets)
library(DT)
library(reshape)
source("code/plots.R")
Load the data and the \(k = 13\) Poisson NMF fit results.
data.dir <- "/project2/mstephens/kevinluo/scATACseq-topics/data/Cusanovich_2018/processed_data"
load(file.path(data.dir, "Cusanovich_2018.RData"))
rm(counts)
fit.dir <- "/project2/mstephens/kevinluo/scATACseq-topics/output/Cusanovich_2018"
fit <- readRDS(file.path(fit.dir, "/fit-Cusanovich2018-scd-ex-k=13.rds"))$fit
fit_multinom <- poisson2multinom(fit)
set.seed(10)
colors_topics <- c("#a6cee3","#1f78b4","#b2df8a","#33a02c","#fb9a99","#e31a1c",
"#fdbf6f","#ff7f00","#cab2d6","#6a3d9a","#ffff99","#b15928",
"gray")
rows <- sample(nrow(fit$L),4000)
samples$tissue <- as.factor(samples$tissue)
p.structure <- structure_plot(select(fit_multinom,loadings = rows),
grouping = samples[rows, "tissue"],n = Inf,gap = 40,
perplexity = 50,topics = 1:13,colors = colors_topics,
num_threads = 4,verbose = FALSE)
print(p.structure)
Set output directorry
out.dir <- "/project2/mstephens/kevinluo/scATACseq-topics/output/Cusanovich_2018"
fig.dir <- "output/plotly/Cusanovich2018"
dir.create(fig.dir, showWarnings = F, recursive = T)
Gene scores were computed using TSS based method as in Lareau et al Nature Biotech, 2019 as well as the model 21
in archR
paper. This model weights chromatin accessibility around gene promoters by using bi-directional exponential decays from the TSS,
gene.dir <- paste0(out.dir, "/geneanalysis-Cusanovich2018-k=13-TSS-sum")
cat(sprintf("Directory of gene analysis result: %s \n", gene.dir))
genescore_res_tss <- readRDS(file.path(gene.dir, "genescore_result_topics.rds"))
genescore_res <- genescore_res_tss
genes <- genescore_res$genes
gene_mean_acc <- genescore_res$colmeans
gene_scores <- genescore_res$Z
gene_logFC <- genescore_res$beta
topics <- colnames(gene_scores)
top_genes <- data.frame(matrix(nrow=10, ncol = ncol(gene_scores)))
colnames(top_genes) <- topics
for (k in topics){
top_genes[,k] <- genes$SYMBOL[head(order(abs(gene_scores[,k]), decreasing=TRUE), 10)]
}
DT::datatable(data.frame(rank = 1:10, top_genes), rownames = F, caption = "Top 10 genes by abs(gene z-scores)")
# Directory of gene analysis result: /project2/mstephens/kevinluo/scATACseq-topics/output/Cusanovich_2018/geneanalysis-Cusanovich2018-k=13-TSS-sum
Topic 1
k <- 1
genescore_volcano_plot(genescore_res, k, label_above_quantile = 0.99,
labels = genescore_res$genes$SYMBOL, max.overlaps = 20,
subsample_below_quantile = 0.5, subsample_rate = 0.1)
Explore the volcano plot interactively
for ( k in 1:ncol(genescore_res$beta) ){
p.volcano.plotly <- genescore_volcano_plotly(genescore_res,k,
file = sprintf("%s/volcano_topic_%s_%s.html", fig.dir, k, "tss-sum"),
labels = genescore_res$genes$SYMBOL)
}
Gene scores were computed using the gene score model (model 42) in the archR
paper with some modifications. This model uses bi-directional exponential decays from the gene TSS (extended upstream by 5 kb by default) and the gene transcription termination site (TTS). Note: the current version of the function does not account for neighboring gene boundaries.
gene.dir <- paste0(out.dir, "/geneanalysis-Cusanovich2018-k=13-genebody-sum")
cat(sprintf("Directory of gene analysis result: %s \n", gene.dir))
genescore_res_gb <- readRDS(file.path(gene.dir, "genescore_result_topics.rds"))
genescore_res <- genescore_res_gb
genes <- genescore_res$genes
gene_mean_acc <- genescore_res$colmeans
gene_scores <- genescore_res$Z
gene_logFC <- genescore_res$beta
topics <- colnames(gene_scores)
top_genes <- data.frame(matrix(nrow=10, ncol = ncol(gene_scores)))
colnames(top_genes) <- topics
for (k in topics){
top_genes[,k] <- genes$SYMBOL[head(order(abs(gene_scores[,k]), decreasing=TRUE), 10)]
}
DT::datatable(data.frame(rank = 1:10, top_genes), rownames = F, caption = "Top 10 genes by abs(gene z-scores)")
# Directory of gene analysis result: /project2/mstephens/kevinluo/scATACseq-topics/output/Cusanovich_2018/geneanalysis-Cusanovich2018-k=13-genebody-sum
Topic 1
k <- 1
genescore_volcano_plot(genescore_res, k, label_above_quantile = 0.99,
labels = genescore_res$genes$SYMBOL, max.overlaps = 20,
subsample_below_quantile = 0.5, subsample_rate = 0.1)
Explore the volcano plot interactively
for ( k in 1:ncol(genescore_res$beta) ){
p.volcano.plotly <- genescore_volcano_plotly(genescore_res,k,
file = sprintf("%s/volcano_topic_%s_%s.html", fig.dir, k, "genebody-sum"),
labels = genescore_res$genes$SYMBOL)
}
m <- ncol(genescore_res_gb$Z)
plots <- vector("list",m)
names(plots) <- colnames(genescore_res_gb$Z)
for (i in 1:m) {
dat <- data.frame(genebody = genescore_res_gb$Z[,i], tss = genescore_res_tss$Z[,i])
plots[[i]] <-
ggplot(dat,aes_string(x = "genebody",y = "tss")) +
geom_point(shape = 21, na.rm = TRUE, size = 1, alpha = 1/10) +
geom_abline(intercept = 0, slope = 1, color="blue") +
labs(x = "gene body model",y = "TSS model",
title = paste("topic",i)) +
theme_cowplot(9)
}
do.call(plot_grid,plots)
Top gene sets/pathways
gene.dir <- paste0(out.dir, "/geneanalysis-Cusanovich2018-k=13-TSS-sum")
cat(sprintf("Directory of gene analysis result: %s \n", gene.dir))
load(file.path(gene.dir, "genescores_gsea.Rdata"))
top_pathways_up <- top_pathways_down <- data.frame(matrix(nrow=10, ncol = ncol(gsea_res$pval)))
colnames(top_pathways_up) <- colnames(top_pathways_down) <- colnames(gsea_res$pval)
for (k in 1:ncol(gsea_res$pval)){
gsea_topic <- data.frame(pathway = rownames(gsea_res$pval),
pval = gsea_res$pval[,k],
log2err = gsea_res$log2err[,k],
ES = gsea_res$ES[,k],
NES = gsea_res$NES[,k])
gsea_up <- gsea_topic[gsea_topic$ES > 0,]
top_IDs_up <- as.character(gsea_up[head(order(gsea_up$pval), 10), "pathway"])
top_IDs_up <- gene_set_info[match(top_IDs_up, gene_set_info$id),c("name", "id")]
top_pathways_up[,k] <- paste0(top_IDs_up$name, "(", top_IDs_up$id, ")")
gsea_down <- gsea_topic[gsea_topic$ES < 0,]
top_IDs_down <- as.character(gsea_down[head(order(gsea_down$pval), 10), "pathway"])
top_IDs_down <- gene_set_info[match(top_IDs_down, gene_set_info$id),c("name", "id")]
top_pathways_down[,k] <- paste0(top_IDs_down$name, "(", top_IDs_down$id, ")")
}
DT::datatable(data.frame(rank = 1:10, top_pathways_up), rownames = F,
caption = "Top 10 pathways enriched at the top of the gene rank list.")
# Directory of gene analysis result: /project2/mstephens/kevinluo/scATACseq-topics/output/Cusanovich_2018/geneanalysis-Cusanovich2018-k=13-TSS-sum
k <- 1
name_interest <- "erythroblast"
ids <- gene_set_info[gsea_res$pval[,k] < 1e-6 & grepl(name_interest, gene_set_info$name, ignore.case = T), "id"]
cat(sprintf("highlighting %d gene sets \n", length(ids)))
if(length(ids) > 0)
print(gene_set_info[gene_set_info$id %in% ids,])
p.gsea <- create_genescore_gsea_plot(gene_set_info, gsea_res, k, ids,
title = sprintf("%s cells (topic %d) GSEA plot", name_interest, k))
print(p.gsea)
# ggsave(sprintf("output/gsea_topic_%d_%s.png", k, name_interest), p_gsea, height = 5, width = 6.25, dpi = 200)
# highlighting 3 gene sets
# name id data_source database
# 12056 GSE27786_LIN_NEG_VS_ERYTHROBLAST_DN M4793 <NA> MSigDB
# 12111 GSE27786_ERYTHROBLAST_VS_NEUTROPHIL_UP M4875 <NA> MSigDB
# 12113 GSE27786_ERYTHROBLAST_VS_MONO_MAC_UP M4877 <NA> MSigDB
# accession category_code sub_category_code organism
# 12056 <NA> C7 Mus musculus
# 12111 <NA> C7 Mus musculus
# 12113 <NA> C7 Mus musculus
# description_brief
# 12056 Genes down-regulated in comparison of lineage negative versus erythroblasts.
# 12111 Genes up-regulated in comparison of erythroblasts versus neutrophils.
# 12113 Genes up-regulated in comparison of erythroblasts versus monocyte macrophages.
Explore the GSEA plot interactively
for ( k in 1:ncol(gsea_res$pval)){
p.gsea.plotly <- create_genescore_gsea_plotly(gene_set_info, gsea_res, k)
saveWidget(p.gsea.plotly,file = sprintf("%s/gsea_topic_%s_%s.html", fig.dir, k, "tss-sum"),
selfcontained = TRUE,title = "GSEA")
}
gene.dir <- paste0(out.dir, "/geneanalysis-Cusanovich2018-k=13-genebody-sum")
cat(sprintf("Directory of gene analysis result: %s \n", gene.dir))
load(file.path(gene.dir, "genescores_gsea.Rdata"))
top_pathways_up <- top_pathways_down <- data.frame(matrix(nrow=10, ncol = ncol(gsea_res$pval)))
colnames(top_pathways_up) <- colnames(top_pathways_down) <- colnames(gsea_res$pval)
for (k in 1:ncol(gsea_res$pval)){
gsea_topic <- data.frame(pathway = rownames(gsea_res$pval),
pval = gsea_res$pval[,k],
log2err = gsea_res$log2err[,k],
ES = gsea_res$ES[,k],
NES = gsea_res$NES[,k])
gsea_up <- gsea_topic[gsea_topic$ES > 0,]
top_IDs_up <- as.character(gsea_up[head(order(gsea_up$pval), 10), "pathway"])
top_pathways_up[,k] <- gene_set_info[match(top_IDs_up, gene_set_info$id),c("name", "id")] %>%
unite("pathway", c("name", "id"), sep = ".", remove = TRUE)
gsea_down <- gsea_topic[gsea_topic$ES < 0,]
top_IDs_down <- as.character(gsea_down[head(order(gsea_down$pval), 10), "pathway"])
top_pathways_down[,k] <- gene_set_info[match(top_IDs_down, gene_set_info$id),c("name", "id")] %>%
unite("pathway", c("name", "id"), sep = ".", remove = TRUE)
}
DT::datatable(data.frame(rank = 1:10, top_pathways_up), rownames = F,
caption = "Top 10 pathways enriched at the top of the gene rank list.")
# Directory of gene analysis result: /project2/mstephens/kevinluo/scATACseq-topics/output/Cusanovich_2018/geneanalysis-Cusanovich2018-k=13-genebody-sum
k <- 1
name_interest <- "erythroblast"
ids <- gene_set_info[gsea_res$pval[,k] < 1e-6 & grepl(name_interest, gene_set_info$name, ignore.case = T), "id"]
cat(sprintf("highlighting %d gene sets \n", length(ids)))
if(length(ids) > 0)
print(gene_set_info[gene_set_info$id %in% ids,])
p.gsea <- create_genescore_gsea_plot(gene_set_info, gsea_res, k, ids,
title = sprintf("%s cells (topic %d) GSEA plot", name_interest, k))
print(p.gsea)
# ggsave(sprintf("output/gsea_topic_%d_%s.png", k, name_interest), p_gsea, height = 5, width = 6.25, dpi = 200)
# highlighting 0 gene sets
Explore the GSEA plot interactively
for ( k in 1:ncol(gsea_res$pval)){
p.gsea.plotly <- create_genescore_gsea_plotly(gene_set_info, gsea_res, k)
saveWidget(p.gsea.plotly,file = sprintf("%s/gsea_topic_%s_%s.html", fig.dir, k, "genebody-sum"),
selfcontained = TRUE,title = "GSEA")
}
sessionInfo()
# R version 3.6.1 (2019-07-05)
# Platform: x86_64-pc-linux-gnu (64-bit)
# Running under: Scientific Linux 7.4 (Nitrogen)
#
# Matrix products: default
# BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
#
# locale:
# [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
# [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
# [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
# [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
# [9] LC_ADDRESS=C LC_TELEPHONE=C
# [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#
# attached base packages:
# [1] stats graphics grDevices utils datasets methods base
#
# other attached packages:
# [1] reshape_0.8.8 DT_0.16 htmlwidgets_1.5.3 plotly_4.9.2.1
# [5] cowplot_1.1.0 ggrepel_0.9.0 ggplot2_3.3.3 tidyr_1.1.2
# [9] dplyr_1.0.2 fastTopics_0.4-6 Matrix_1.2-18 workflowr_1.6.2
#
# loaded via a namespace (and not attached):
# [1] Rcpp_1.0.6 lattice_0.20-41 prettyunits_1.1.1 rprojroot_2.0.2
# [5] digest_0.6.27 plyr_1.8.6 R6_2.5.0 MatrixModels_0.4-1
# [9] evaluate_0.14 coda_0.19-4 httr_1.4.2 pillar_1.4.7
# [13] rlang_0.4.10 progress_1.2.2 lazyeval_0.2.2 data.table_1.13.4
# [17] irlba_2.3.3 SparseM_1.78 whisker_0.4 rmarkdown_2.6
# [21] labeling_0.4.2 Rtsne_0.15 stringr_1.4.0 munsell_0.5.0
# [25] compiler_3.6.1 httpuv_1.5.4 xfun_0.19 pkgconfig_2.0.3
# [29] mcmc_0.9-7 htmltools_0.5.0 tidyselect_1.1.0 tibble_3.0.5
# [33] quadprog_1.5-8 matrixStats_0.57.0 viridisLite_0.3.0 withr_2.4.0
# [37] crayon_1.3.4 conquer_1.0.2 later_1.1.0.1 MASS_7.3-53
# [41] grid_3.6.1 jsonlite_1.7.2 gtable_0.3.0 lifecycle_0.2.0
# [45] git2r_0.27.1 magrittr_2.0.1 scales_1.1.1 RcppParallel_5.0.2
# [49] stringi_1.5.3 farver_2.0.3 fs_1.3.1 promises_1.1.1
# [53] ellipsis_0.3.1 generics_0.1.0 vctrs_0.3.6 tools_3.6.1
# [57] glue_1.4.2 purrr_0.3.4 crosstalk_1.1.0.1 hms_1.0.0
# [61] yaml_2.2.1 colorspace_2.0-0 knitr_1.30 quantreg_5.75
# [65] MCMCpack_1.4-9