Last updated: 2024-11-04

Checks: 7 0

Knit directory: single-cell-jamboree-main/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(1) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 7667043. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/3DA36548/bibliography-index/
    Ignored:    .Rproj.user/3DA36548/ctx/
    Ignored:    .Rproj.user/3DA36548/explorer-cache/
    Ignored:    .Rproj.user/3DA36548/presentation/
    Ignored:    .Rproj.user/3DA36548/profiles-cache/
    Ignored:    .Rproj.user/3DA36548/tutorial/
    Ignored:    .Rproj.user/3DA36548/viewer-cache/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Exploration_pancreas_data_using_Seurat.Rmd) and HTML (docs/Exploration_pancreas_data_using_Seurat.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 7667043 Sagnik 2024-11-04 Initial commit
html 7667043 Sagnik 2024-11-04 Initial commit

In this analysis, we aim to generate an improved visualization of pancreas data from the 2022 benchmarking study by [Luecken et al.][luecken-2022] using the Seurat package in R. This analysis uses the pre-processed dataset, pancreas.RData.

1. Load Libraries

Load the necessary libraries for data analysis, plotting, and Seurat analysis.

library(Seurat)
# Loading required package: SeuratObject
# Loading required package: sp
# 'SeuratObject' was built under R 4.4.0 but the current version is
# 4.4.1; it is recomended that you reinstall 'SeuratObject' as the ABI
# for R may have changed
# 'SeuratObject' was built with package 'Matrix' 1.7.0 but the current
# version is 1.7.1; it is recomended that you reinstall 'SeuratObject' as
# the ABI for 'Matrix' may have changed
# 
# Attaching package: 'SeuratObject'
# The following objects are masked from 'package:base':
# 
#     intersect, t
library(tidyverse)
# ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
# ✔ dplyr     1.1.4     ✔ readr     2.1.5
# ✔ forcats   1.0.0     ✔ stringr   1.5.1
# ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
# ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
# ✔ purrr     1.0.2
# ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
# ✖ dplyr::filter() masks stats::filter()
# ✖ dplyr::lag()    masks stats::lag()
# ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(patchwork)
library(cowplot)
# 
# Attaching package: 'cowplot'
# 
# The following object is masked from 'package:patchwork':
# 
#     align_plots
# 
# The following object is masked from 'package:lubridate':
# 
#     stamp
library(RColorBrewer)
library(Biobase)
# Loading required package: BiocGenerics
# 
# Attaching package: 'BiocGenerics'
# 
# The following objects are masked from 'package:lubridate':
# 
#     intersect, setdiff, union
# 
# The following objects are masked from 'package:dplyr':
# 
#     combine, intersect, setdiff, union
# 
# The following object is masked from 'package:SeuratObject':
# 
#     intersect
# 
# The following objects are masked from 'package:stats':
# 
#     IQR, mad, sd, var, xtabs
# 
# The following objects are masked from 'package:base':
# 
#     anyDuplicated, aperm, append, as.data.frame, basename, cbind,
#     colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
#     get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
#     match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
#     Position, rank, rbind, Reduce, rownames, sapply, setdiff, table,
#     tapply, union, unique, unsplit, which.max, which.min
# 
# Welcome to Bioconductor
# 
#     Vignettes contain introductory material; view with
#     'browseVignettes()'. To cite Bioconductor, see
#     'citation("Biobase")', and for packages 'citation("pkgname")'.
library(clusterSim)
# Loading required package: cluster
# Loading required package: MASS
# 
# Attaching package: 'MASS'
# 
# The following object is masked from 'package:patchwork':
# 
#     area
# 
# The following object is masked from 'package:dplyr':
# 
#     select
library(fpc)
library(ggpubr)
# 
# Attaching package: 'ggpubr'
# 
# The following object is masked from 'package:cowplot':
# 
#     get_legend
library(gridExtra)
# 
# Attaching package: 'gridExtra'
# 
# The following object is masked from 'package:Biobase':
# 
#     combine
# 
# The following object is masked from 'package:BiocGenerics':
# 
#     combine
# 
# The following object is masked from 'package:dplyr':
# 
#     combine

2. Define Custom Functions

Define any custom functions for the analysis. This includes a customized plotting function for dimensional reduction (e.g., UMAP or PCA) and a function to create an elbow plot of the top variable features in a Seurat object.

# Customized dimensional reduction plot function (e.g., UMAP or PCA)
DimPlot <- function(
    data,
    dims = c(1, 2),         # Dimensions to plot (e.g., UMAP1 and UMAP2)
    cells = NULL,           # Subset of cells to plot
    cols = NULL,            # Colors for different groups
    pt.size = NULL,         # Point size for plotting
    reduction = NULL,       # Dimensional reduction technique (e.g., "umap" or "pca")
    group.by = NULL,        # Metadata column to color by
    split.by = NULL,        # Metadata column to facet by
    shape.by = NULL,        # Metadata column to shape by
    order = NULL,           # Custom order for plotting
    shuffle = FALSE,        # Option to shuffle data points to randomize plotting order
    seed = 1,               # Random seed for shuffling
    label = FALSE,          # Option to add labels to clusters
    label.size = 4,         # Size of cluster labels
    label.color = 'black',  # Color of the labels
    label.box = FALSE,      # Option to put labels in a box
    repel = FALSE,          # Use repelling labels to avoid overlap
    cells.highlight = NULL, # Subset of cells to highlight
    cols.highlight = '#DE2D26', # Color for highlighted cells
    sizes.highlight = 1,    # Size of highlighted cells
    na.value = 'grey50',    # Color for NA values
    ncol = NULL,            # Number of columns for faceting
    combine = TRUE,         # Combine plots into one
    raster = NULL,          # Option to use raster graphics
    raster.dpi = c(512, 512) # Resolution for raster graphics
) {
   if (length(x = dims) != 2) {
    stop("'dims' must be a two-length vector")
  }
  colnames(data) <- paste0("UMAP", dims)
  data <- as.data.frame(x = data)
  dims <- paste0("UMAP", dims)
  data <- cbind(data, group.by)
  orig.groups <- group.by
  group.by <- colnames(x = data)[3:ncol(x = data)]
  for (group in group.by) {
    if (!is.factor(x = data[, group])) {
      data[, group] <- factor(x = data[, group])
    }
  }
  if (!is.null(x = shape.by)) {
    data[, shape.by] <- object[[shape.by, drop = TRUE]]
  }
  if (!is.null(x = split.by)) {
    data[, split.by] <- object[[split.by, drop = TRUE]]
  }
  if (isTRUE(x = shuffle)) {
    set.seed(seed = seed)
    data <- data[sample(x = 1:nrow(x = data)), ]
  }
  plots <- lapply(
    X = group.by,
    FUN = function(x) {
      plot <- SingleDimPlot(
        data = data[, c(dims, x, split.by, shape.by)],
        dims = dims,
        col.by = x,
        cols = cols,
        pt.size = pt.size,
        shape.by = shape.by,
        order = order,
        label = FALSE,
        cells.highlight = cells.highlight,
        cols.highlight = cols.highlight,
        sizes.highlight = sizes.highlight,
        na.value = na.value,
        raster = raster,
        raster.dpi = raster.dpi
      )
      if (label) {
        plot <- LabelClusters(
          plot = plot,
          id = x,
          repel = repel,
          size = label.size,
          split.by = split.by,
          box = label.box,
          color = label.color
        )
      }
      if (!is.null(x = split.by)) {
        plot <- plot + FacetTheme() +
          facet_wrap(
            facets = vars(!!sym(x = split.by)),
            ncol = if (length(x = group.by) > 1 || is.null(x = ncol)) {
              length(x = unique(x = data[, split.by]))
            } else {
              ncol
            }
          )
      }
      plot <- if (is.null(x = orig.groups)) {
        plot + labs(title = NULL)
      } else {
        plot + labs(title = NULL)
      }
    }
  )
  if (!is.null(x = split.by)) {
    ncol <- 1
  }
  if (combine) {
    plots <- wrap_plots(plots, ncol = orig.groups %iff% ncol)
  }
  return(plots)
}


create_elbow_plot <- function(object, assay = "RNA", k = 5000) {
  # Get the high variable feature information
  hvf.info <- HVFInfo(object = object, assay = assay)
  
  # Sort the features by standardized variance in descending order
  sorted_standardized_variances <- hvf.info[order(hvf.info$variance.standardized, decreasing = TRUE), ]
  
  # Convert row names to a column named "Gene"
  sorted_standardized_variances <- sorted_standardized_variances %>%
    tibble::rownames_to_column("Gene") %>%
    mutate(Gene_Index = row_number())
  
  # Select the top k genes based on variance
  top_interest <- head(sorted_standardized_variances, k)
  
  # Create the elbow plot
  ggplot(top_interest, aes(x = Gene_Index, y = variance.standardized)) +
    geom_line() +
    labs(title = paste("Elbow Plot of Top", k, "Genes by Standardized Variance"),
         x = paste("Top", k, "Genes (ordered by variance)"),
         y = "Standardized Variance") +
    theme_minimal()
}

# Function to create an elbow plot for Seurat objects
create_elbow_plot <- function(object, assay = "RNA", k = 5000) {
  hvf.info <- HVFInfo(object = object, assay = assay)
  sorted_standardized_variances <- hvf.info[order(hvf.info$variance.standardized, decreasing = TRUE), ]
  sorted_standardized_variances <- sorted_standardized_variances %>%
    tibble::rownames_to_column("Gene") %>%
    mutate(Gene_Index = row_number())
  top_interest <- head(sorted_standardized_variances, k)
  ggplot(top_interest, aes(x = Gene_Index, y = variance.standardized)) +
    geom_line() +
    labs(
      title = paste("Elbow Plot of Top", k, "Genes by Standardized Variance"),
      x = paste("Top", k, "Genes (ordered by variance)"),
      y = "Standardized Variance"
    ) +
    theme_minimal()
}

3. Set Working Directory and Load Data

Set the working directory to the location of the pancreas.RData file, and load the dataset, which contains “counts” and “sample_info”.

#setwd("/path/to/directory") # Replace with your directory path
load("/Users/sagnik/Dropbox/Research Projects/Mathew Stephens/EBNMF/Pancreas/pancreas.RData")

4. Study Size Factors

Visualize the distribution of total counts (size factors) per cell in log scale.

s <- rowSums(counts)
pdat <- data.frame(log_size_factor = log10(s))
ggplot(pdat, aes(log_size_factor)) +
  geom_histogram(bins = 64, col = "black", fill = "black") +
  labs(x = "Log(Size Factor)") +
  theme_cowplot(font_size = 10)

Version Author Date
7667043 Sagnik 2024-11-04

5. Study Gene Expression Levels

Examine the distribution of gene expression levels in the dataset.

p <- counts[counts > 0]  # Filter non-zero counts
pdat <- data.frame(log_rel_expression_level = log10(p))
ggplot(pdat, aes(log_rel_expression_level)) +
  geom_histogram(bins = 64, col = "black", fill = "black") +
  labs(x = "Log-Expression Level (Relative)") +
  theme_cowplot(font_size = 10)

Version Author Date
7667043 Sagnik 2024-11-04

6. Create Seurat Object

Create a Seurat object from the counts data, using sample_info as metadata. Normalize the data with a custom scale factor based on the mean size factor.

pancreas <- CreateSeuratObject(counts = t(counts), project = "pancreas", meta.data = sample_info)
scale_factor <- mean(s)
pancreas <- NormalizeData(pancreas, normalization.method = "LogNormalize", scale.factor = scale_factor)
# Normalizing layer: counts

7. Identify Variable Features

Identify the top 5,000 variable genes.

pancreas <- FindVariableFeatures(pancreas, selection.method = "vst", nfeatures = 5000)
# Finding variable features for layer counts
VariableFeaturePlot(pancreas)
# Warning in scale_x_log10(): log-10 transformation introduced infinite values.

Version Author Date
7667043 Sagnik 2024-11-04

8. Elbow Plot of Variable Features

Generate an elbow plot to analyze variance across the top variable features.

create_elbow_plot(object = pancreas, assay = "RNA", k = 5000)

Version Author Date
7667043 Sagnik 2024-11-04

9. Select Top 1,000 Variable Features

Select the top 1,000 variable genes for further analysis.

desired_genes <- head(VariableFeatures(pancreas), 1000)

10. Scale Data and Run PCA

Scale the data for the selected features and run PCA.

pancreas <- ScaleData(pancreas, features = desired_genes)
# Centering and scaling data matrix
pancreas <- RunPCA(pancreas, assay = "RNA", features = desired_genes)
# PC_ 1 
# Positive:  CHGA, VGF, PCSK1, CRYBA2, IAPP, ADCYAP1, PAPPA2, PRUNE2, EDN3, ELMO1 
#      SORL1, BMP5, DLK1, C10orf10, PLCB4, RBP4, LOXL4, KLHL41, NPY, PFKFB2 
#      PLCE1, PDK4, SLC25A6, WSCD2, TMED8, RGS16, PTP4A3, GPM6A, SLC25A34, WNK3 
# Negative:  ZFP36L1, PMEPA1, SERPING1, SOX4, MSN, TACSTD2, C1S, NFIB, LGALS1, FSTL1 
#      CFB, CLIC4, SERPINH1, ENC1, KRT7, LTBP1, CLDN1, UACA, PHLDA1, ITGA5 
#      COL4A1, SERPINA3, COL4A2, IL32, CD44, SDC4, C1R, FN1, PDZK1IP1, LCN2 
# PC_ 2 
# Positive:  SPARC, PDGFRB, BGN, COL15A1, COL6A2, COL1A2, COL5A1, COL3A1, AEBP1, SFRP2 
#      MRC2, LUM, LAMA4, COL5A2, THBS2, MMP2, THY1, TIMP3, IGFBP4, HTRA3 
#      CDH11, LRRC32, PXDN, COL4A1, NID1, LAMC3, DCN, COL6A3, VCAN, PRRX1 
# Negative:  SERPINA3, PDZK1IP1, TACSTD2, GATM, MUC1, LCN2, SDC4, KRT7, ANPEP, CFB 
#      KRT8, SPINK1, KRT18, PRSS1, CPA2, CLDN4, AKR1C3, PRSS8, TC2N, PNLIP 
#      REG1A, CLDN1, IL32, KLK1, CTRB1, CPA1, CTRC, TM4SF1, PLA2G1B, PRSS3 
# PC_ 3 
# Positive:  CFTR, VTCN1, TSPAN8, MMP7, AQP1, SPP1, SLC3A1, SLC4A4, HSD17B2, ALDH1A3 
#      ANXA3, CEACAM7, LGALS4, SERPINA5, SORL1, KRT23, TINAGL1, APCDD1, ANXA4, CTSH 
#      CLDN10, CD74, APCS, VCAM1, SLPI, PIGR, PRKCA, KRT19, CRP, PDLIM3 
# Negative:  CELA3B, CELA3A, CTRB1, SYCN, KLK1, PNLIPRP1, CLPS, CELA2A, CPA2, CTRC 
#      PLA2G1B, CPA1, CELA2B, CTRB2, CTRL, CUZD1, PNLIPRP2, PRSS1, GP2, CPB1 
#      PNLIP, PRSS3, REG3G, PDIA2, REG1B, RNASE1, AMY2A, MGST1, REG1A, SPINK1 
# PC_ 4 
# Positive:  PLVAP, CD93, KDR, PECAM1, ROBO4, ESM1, ECSCR, ACVRL1, VWF, FLT1 
#      ESAM, RGCC, S1PR1, ERG, CDH5, CXCR4, BCL6B, CLEC14A, PODXL, PTPRB 
#      PASK, ABI3, IFI27, CALCRL, ANGPT2, PCDH12, MYCT1, MMRN2, STC1, ACKR3 
# Negative:  LUM, SFRP2, COL1A2, THBS2, COL6A3, COL5A1, COL3A1, COL5A2, FMOD, VCAN 
#      DCN, LTBP2, COL1A1, CDH11, FN1, HEYL, TNFAIP6, ANTXR1, PRRX1, MXRA8 
#      HSD11B1, COL8A1, PDGFRB, ADAMTS12, PDGFRA, LAMC3, ISLR, WISP1, SPON2, WNT5A 
# PC_ 5 
# Positive:  EXPH5, MEG3, PEAK1, PLCB4, PFKFB2, PRUNE2, ANO5, ZNF33B, DGKB, INSR 
#      REG3A, CEL, TCF4, ZNF721, PNLIP, LYZ, SORL1, ENTPD3, ZNF124, BCAT1 
#      PTCHD4, USP54, COX15, GSTA2, ALB, NEAT1, NRG4, CHL1, CPB1, FLT1 
# Negative:  KRT19, SERPINA1, SERPING1, TFPI2, TINAGL1, MMP7, CCL2, PMEPA1, ALDH1A3, KRT23 
#      SLC25A6, VCAM1, CFTR, LGALS4, MYL9, HSPB1, SERPINA5, FSTL3, LAMB3, TGM2 
#      CXCL6, DDIT4, CTGF, KRT17, PLAUR, SERINC2, PRSS8, CXCL1, IGFBP7, VTCN1
ElbowPlot(pancreas, ndims = 50)

Version Author Date
7667043 Sagnik 2024-11-04

11. Run UMAP

Perform UMAP using the top 25 principal components.

pancreas <- RunUMAP(pancreas, dims = 1:25)
# Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
# To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
# This message will be shown once per session
# 18:26:34 UMAP embedding parameters a = 0.9922 b = 1.112
# 18:26:34 Read 16382 rows and found 25 numeric columns
# 18:26:34 Using Annoy for neighbor search, n_neighbors = 30
# 18:26:34 Building Annoy index with metric = cosine, n_trees = 50
# 0%   10   20   30   40   50   60   70   80   90   100%
# [----|----|----|----|----|----|----|----|----|----|
# **************************************************|
# 18:26:35 Writing NN index file to temp file /var/folders/wc/v_nfs9816z5gz9p6y3_q53pm0000gn/T//RtmpAk3hOz/fileae544d87419c
# 18:26:35 Searching Annoy index using 1 thread, search_k = 3000
# 18:26:38 Annoy recall = 100%
# 18:26:38 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
# 18:26:38 Initializing from normalized Laplacian + noise (using RSpectra)
# 18:26:39 Commencing optimization for 200 epochs, with 716942 positive edges
# 18:26:43 Optimization finished
umap_embeddings <- Embeddings(object = pancreas, reduction = "umap")

12. Define Colors for Cell Types

Define a color vector for distinguishing 14 different cell types.

col_vector <- c(
  "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00",
  "#FFFF33", "#A65628", "#999999", "#66C2A5", "#FC8D62",
  "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F"
)

13. Create UMAP Plots by Cell Type and Technology

Generate UMAP plots where cell types are represented by colors and technology by shapes.

# Create UMAP Plots by Cell Type and Technology
p1 <- DimPlot(umap_embeddings, group.by = sample_info$celltype, pt.size = 0.04, cols = col_vector) +
  theme(plot.title = element_text(hjust = 0.5)) +
  ggtitle("UMAP of Pancreas Cells by Cell Type")
p2 <- DimPlot(umap_embeddings, group.by = sample_info$tech, pt.size = 0.04, cols = col_vector) +
  theme(plot.title = element_text(hjust = 0.5)) +
  ggtitle("UMAP of Pancreas Cells by Technology")

# Combine plots side-by-side
combined_plot <- p1 + p2 + plot_layout(ncol = 2)
combined_plot

Version Author Date
7667043 Sagnik 2024-11-04
ggsave(
  filename = "combined_umap_plot.png",    # File name and format
  plot = combined_plot,                   # The plot object to save
  width = 15,                             # Width in inches
  height = 6,                             # Height in inches
  dpi = 300                               # Resolution in dots per inch (for high-quality output)
)

sessionInfo()
# R version 4.4.1 (2024-06-14)
# Platform: aarch64-apple-darwin20
# Running under: macOS 15.0.1
# 
# Matrix products: default
# BLAS:   /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib 
# LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0
# 
# locale:
# [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
# 
# time zone: America/Chicago
# tzcode source: internal
# 
# attached base packages:
# [1] stats     graphics  grDevices utils     datasets  methods   base     
# 
# other attached packages:
#  [1] gridExtra_2.3       ggpubr_0.6.0        fpc_2.2-13         
#  [4] clusterSim_0.51-5   MASS_7.3-61         cluster_2.1.6      
#  [7] Biobase_2.64.0      BiocGenerics_0.50.0 RColorBrewer_1.1-3 
# [10] cowplot_1.1.3       patchwork_1.3.0     lubridate_1.9.3    
# [13] forcats_1.0.0       stringr_1.5.1       dplyr_1.1.4        
# [16] purrr_1.0.2         readr_2.1.5         tidyr_1.3.1        
# [19] tibble_3.2.1        ggplot2_3.5.1       tidyverse_2.0.0    
# [22] Seurat_5.1.0        SeuratObject_5.0.2  sp_2.1-4           
# 
# loaded via a namespace (and not attached):
#   [1] RcppAnnoy_0.0.22       splines_4.4.1          later_1.3.2           
#   [4] polyclip_1.10-7        fastDummies_1.7.4      lifecycle_1.0.4       
#   [7] rstatix_0.7.2          rprojroot_2.0.4        globals_0.16.3        
#  [10] lattice_0.22-6         prabclus_2.3-4         backports_1.5.0       
#  [13] magrittr_2.0.3         plotly_4.10.4          sass_0.4.9            
#  [16] rmarkdown_2.28         jquerylib_0.1.4        yaml_2.3.10           
#  [19] httpuv_1.6.15          sctransform_0.4.1      spam_2.11-0           
#  [22] flexmix_2.3-19         spatstat.sparse_3.1-0  reticulate_1.39.0     
#  [25] pbapply_1.7-2          ade4_1.7-22            abind_1.4-8           
#  [28] Rtsne_0.17             nnet_7.3-19            git2r_0.35.0          
#  [31] ggrepel_0.9.6          irlba_2.3.5.1          listenv_0.9.1         
#  [34] spatstat.utils_3.1-0   goftest_1.2-3          RSpectra_0.16-2       
#  [37] spatstat.random_3.3-2  fitdistrplus_1.2-1     parallelly_1.38.0     
#  [40] leiden_0.4.3.1         codetools_0.2-20       tidyselect_1.2.1      
#  [43] farver_2.1.2           matrixStats_1.4.1      stats4_4.4.1          
#  [46] spatstat.explore_3.3-3 jsonlite_1.8.9         e1071_1.7-16          
#  [49] progressr_0.15.0       Formula_1.2-5          ggridges_0.5.6        
#  [52] survival_3.7-0         systemfonts_1.1.0      tools_4.4.1           
#  [55] ragg_1.3.3             ica_1.0-3              Rcpp_1.0.13           
#  [58] glue_1.8.0             xfun_0.48              withr_3.0.2           
#  [61] fastmap_1.2.0          fansi_1.0.6            digest_0.6.37         
#  [64] timechange_0.3.0       R6_2.5.1               mime_0.12             
#  [67] textshaping_0.4.0      colorspace_2.1-1       scattermore_1.2       
#  [70] tensor_1.5             spatstat.data_3.1-2    diptest_0.77-1        
#  [73] utf8_1.2.4             generics_0.1.3         data.table_1.16.2     
#  [76] robustbase_0.99-4-1    class_7.3-22           httr_1.4.7            
#  [79] htmlwidgets_1.6.4      whisker_0.4.1          uwot_0.2.2            
#  [82] pkgconfig_2.0.3        gtable_0.3.6           modeltools_0.2-23     
#  [85] workflowr_1.7.1        lmtest_0.9-40          htmltools_0.5.8.1     
#  [88] carData_3.0-5          dotCall64_1.2          scales_1.3.0          
#  [91] png_0.1-8              spatstat.univar_3.0-1  knitr_1.48            
#  [94] rstudioapi_0.17.1      tzdb_0.4.0             reshape2_1.4.4        
#  [97] nlme_3.1-166           proxy_0.4-27           cachem_1.1.0          
# [100] zoo_1.8-12             KernSmooth_2.23-24     parallel_4.4.1        
# [103] miniUI_0.1.1.1         pillar_1.9.0           grid_4.4.1            
# [106] vctrs_0.6.5            RANN_2.6.2             promises_1.3.0        
# [109] car_3.1-3              xtable_1.8-4           evaluate_1.0.1        
# [112] cli_3.6.3              compiler_4.4.1         rlang_1.1.4           
# [115] future.apply_1.11.3    ggsignif_0.6.4         labeling_0.4.3        
# [118] mclust_6.1.1           plyr_1.8.9             fs_1.6.5              
# [121] stringi_1.8.4          viridisLite_0.4.2      deldir_2.0-4          
# [124] munsell_0.5.1          lazyeval_0.2.2         spatstat.geom_3.3-3   
# [127] Matrix_1.7-1           RcppHNSW_0.6.0         hms_1.1.3             
# [130] future_1.34.0          shiny_1.9.1            highr_0.11            
# [133] kernlab_0.9-33         ROCR_1.0-11            igraph_2.1.1          
# [136] broom_1.0.7            bslib_0.8.0            DEoptimR_1.1-3