Last updated: 2020-10-18

Checks: 7 0

Knit directory: single-cell-topics/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2.9000). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(1) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version a51c33b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    data/droplet.RData
    Ignored:    data/pbmc_68k.RData
    Ignored:    data/pbmc_purified.RData
    Ignored:    data/pulseseq.RData
    Ignored:    output/droplet/diff-count-droplet.RData
    Ignored:    output/droplet/fits-droplet.RData
    Ignored:    output/droplet/rds/
    Ignored:    output/pbmc-68k/fits-pbmc-68k.RData
    Ignored:    output/pbmc-68k/rds/
    Ignored:    output/pbmc-purified/fits-pbmc-purified.RData
    Ignored:    output/pbmc-purified/rds/
    Ignored:    output/pulseseq/diff-count-pulseseq.RData
    Ignored:    output/pulseseq/fits-pulseseq.RData
    Ignored:    output/pulseseq/rds/

Untracked files:
    Untracked:  analysis/temp.RData

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/clusters_droplet.Rmd) and HTML (docs/clusters_droplet.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd a51c33b Peter Carbonetto 2020-10-18 workflowr::wflow_publish(“clusters_droplet.Rmd”)
Rmd 199ca88 Peter Carbonetto 2020-10-17 Working on analysis of single-cell likelihoods in clusters_droplet.Rmd.
Rmd 627cdb4 Peter Carbonetto 2020-10-16 A couple minor edits to the code and text of the analyses.
html 8a4b9da Peter Carbonetto 2020-10-15 Adjusted code for some of the PCA plots in the clusters_droplet
Rmd bb62871 Peter Carbonetto 2020-10-15 workflowr::wflow_publish(“clusters_droplet.Rmd”)
html 4cb48ba Peter Carbonetto 2020-10-15 Adjusted dimensions of a PCA plot in clusters_droplet analysis.
Rmd b64e34f Peter Carbonetto 2020-10-15 workflowr::wflow_publish(“clusters_droplet.Rmd”, verbose = TRUE)
html c679d14 Peter Carbonetto 2020-10-15 Revised PCA plots showing the clustering in the clusters_droplet analysis.
Rmd 3bff164 Peter Carbonetto 2020-10-15 workflowr::wflow_publish(“clusters_droplet.Rmd”, verbose = TRUE)
html c12c1cf Peter Carbonetto 2020-10-11 Replaced dotplot with boxplot in clusters_pulseseq analysis.
Rmd 60b069f Peter Carbonetto 2020-10-11 workflowr::wflow_publish(“clusters_droplet.Rmd”)
html 84e5598 Peter Carbonetto 2020-10-11 Fixed small mistake in clusters_droplet analysis.
Rmd bdcb88e Peter Carbonetto 2020-10-11 workflowr::wflow_publish(“clusters_droplet.Rmd”)
html d9bf10d Peter Carbonetto 2020-10-11 Added T+N cluster to totalvardist plots in clusters_droplet analysis.
Rmd 87d00d0 Peter Carbonetto 2020-10-11 workflowr::wflow_publish(“clusters_droplet.Rmd”)
html b6374a1 Peter Carbonetto 2020-10-11 Added plots comparing total variation distances in clusters_droplet
Rmd c69aa03 Peter Carbonetto 2020-10-11 workflowr::wflow_publish(“clusters_droplet.Rmd”)
Rmd 62834cb Peter Carbonetto 2020-10-09 Working on various exploratory analyses of the droplet and pulse-seq data.
Rmd d2377ec Peter Carbonetto 2020-10-06 Simplified implementation of cellcycle_pca_plot by making use of a new pca_plot interface from the fastTopics package.
html 5510fd5 Peter Carbonetto 2020-10-06 clusters_droplet no longer uses plots.R.
Rmd d5ea8c2 Peter Carbonetto 2020-10-06 workflowr::wflow_publish(“clusters_droplet.Rmd”, verbose = TRUE)
html d707238 Peter Carbonetto 2020-10-06 Re-built clusters_droplet analysis using new fastTopics plots.
Rmd f4e0448 Peter Carbonetto 2020-10-06 workflowr::wflow_publish(“clusters_droplet.Rmd”, verbose = TRUE)
html 3bada76 Peter Carbonetto 2020-10-04 Added PCA plots to clusters_droplet analysis showing substructure in
Rmd 198eaf8 Peter Carbonetto 2020-10-04 workflowr::wflow_publish(“clusters_droplet.Rmd”)
Rmd 5e57ced Peter Carbonetto 2020-10-03 Working on plots highlighting substructure in T+N cluster.
html ab1ed99 Peter Carbonetto 2020-09-27 Resized plot in clusters_droplet analysis.
Rmd 306f5dc Peter Carbonetto 2020-09-27 workflowr::wflow_publish(“clusters_droplet.Rmd”)
html bf299b9 Peter Carbonetto 2020-09-27 Use pca_plot_with_counts in clusters_droplet analysis.
Rmd 54f44d3 Peter Carbonetto 2020-09-27 workflowr::wflow_publish(“clusters_droplet.Rmd”)
html 4fe31a6 Peter Carbonetto 2020-09-22 Build site.
Rmd ffdc209 Peter Carbonetto 2020-09-22 workflowr::wflow_publish(“clusters_droplet.Rmd”)
html 2ddbe33 Peter Carbonetto 2020-09-21 A couple refinements to clusters_droplet analysis.
Rmd 2a5e8da Peter Carbonetto 2020-09-21 workflowr::wflow_publish(“clusters_droplet.Rmd”)
html 0a8b571 Peter Carbonetto 2020-09-21 Added PCA plots showing continuous variation in club cells.
Rmd 605b540 Peter Carbonetto 2020-09-21 workflowr::wflow_publish(“clusters_droplet.Rmd”)
html db6135c Peter Carbonetto 2020-09-21 Added B+C cluster to clustering of droplet data, and added plot
Rmd 69d1f0a Peter Carbonetto 2020-09-21 workflowr::wflow_publish(“clusters_droplet.Rmd”)
Rmd e2a8071 Peter Carbonetto 2020-09-20 Saved new clustering-droplet.rds.
html b5e1a7e Peter Carbonetto 2020-09-20 Fixed up Structure plot in clusters_droplet analysis.
Rmd b7d1acc Peter Carbonetto 2020-09-20 workflowr::wflow_publish(“clusters_droplet.Rmd”)
html 4172024 Peter Carbonetto 2020-09-20 Identified H cluster in droplet data.
Rmd decefd4 Peter Carbonetto 2020-09-20 workflowr::wflow_publish(“clusters_droplet.Rmd”)
html 5361fdf Peter Carbonetto 2020-09-19 Adjusted the plots in clusters_droplet analysis.
Rmd 7830b35 Peter Carbonetto 2020-09-19 workflowr::wflow_publish(“clusters_droplet.Rmd”)
html 311b4e8 Peter Carbonetto 2020-09-19 Made a few minor improvements to the clusters_droplet analysis.
Rmd ba90d80 Peter Carbonetto 2020-09-19 workflowr::wflow_publish(“clusters_droplet.Rmd”)
html b1cb82e Peter Carbonetto 2020-09-19 Added clustering from PCA plots to clusters_droplet analysis.
Rmd 81e7faf Peter Carbonetto 2020-09-19 workflowr::wflow_publish(“clusters_droplet.Rmd”)
Rmd c8dd3af Peter Carbonetto 2020-09-16 Implemented basic_pca_plot; improved labeled_pca_plot function.

Here we perform PCA on the topic proportions to identify clusters in the droplet data.

Load the packages used in the analysis below, as well as additional functions that we will use to generate some of the plots.

library(Matrix)
library(dplyr)
library(fastTopics)
library(ggplot2)
library(cowplot)
source("../code/plots.R")

Load data and results

Load the droplet data.

load("../data/droplet.RData")

Load the \(k = 7\) Poisson NMF model fit.

fit <- readRDS("../output/droplet/rds/fit-droplet-scd-ex-k=7.rds")$fit

Identify clusters from principal components

To identify clusters, we begin by plotting PCs computed from the topic proportions. (Note that only 6 PCs are needed for 7 topics.)

p1 <- pca_plot(poisson2multinom(fit),pcs = 1:2,fill = "none")
p2 <- pca_plot(poisson2multinom(fit),pcs = 3:4,fill = "none")
p3 <- pca_plot(poisson2multinom(fit),pcs = 5:6,fill = "none")
plot_grid(p1,p2,p3,nrow = 1,ncol = 3)

Version Author Date
d707238 Peter Carbonetto 2020-10-06
b1cb82e Peter Carbonetto 2020-09-19

Some of the structure is more evident from “hexbin” plots showing the density of the points.

breaks <- c(0,1,5,10,100,Inf)
p4 <- pca_hexbin_plot(poisson2multinom(fit),pcs = 1:2,breaks = breaks)
p5 <- pca_hexbin_plot(poisson2multinom(fit),pcs = 3:4,breaks = breaks)
p6 <- pca_hexbin_plot(poisson2multinom(fit),pcs = 5:6,breaks = breaks)
p4 <- p4 + guides(fill = "none")
p5 <- p5 + guides(fill = "none")
p6 <- p6 + guides(fill = "none")
plot_grid(p4,p5,p6,nrow = 1,ncol = 3)

Version Author Date
d707238 Peter Carbonetto 2020-10-06
b1cb82e Peter Carbonetto 2020-09-19

From these PCA plots, we define 4 clusters, labeled A, Cil, G and T+N. (The reasoning behind these labels will become clear later.) Points that do not fit in any of these clusters are assigned to a “background cluster”, labeled U.

pca <- prcomp(poisson2multinom(fit)$L)$x
x   <- rep("U",nrow(pca))
pc1 <- pca[,1]
pc2 <- pca[,2]
pc6 <- pca[,6]
x[pc2 > -0.15] <- "A"
x[pc1 > 0.3 & pc2 < -0.75] <- "Cil"
x[pc1 <= 0.3 & pc2 >= -0.75 & pc2 < -0.4] <- "T+N"
x[pc6 < -0.05] <- "G"

There is additional substructure in cluster A, which is more apparent in the projection onto the top 2 PCs computed from cluster A only.

rows <- which(x == "A")
fit2 <- select(poisson2multinom(fit),loadings = rows)
p7   <- pca_plot(fit2,fill = "none")
p8   <- pca_hexbin_plot(fit2,breaks = breaks) + guides(fill = "none")
plot_grid(p7,p8)

Version Author Date
d707238 Peter Carbonetto 2020-10-06
5361fdf Peter Carbonetto 2020-09-19
311b4e8 Peter Carbonetto 2020-09-19
b1cb82e Peter Carbonetto 2020-09-19

The variation in PCs 1 and 2 is mostly produced by topics 2, 4 and 5.

p9 <- pca_plot(fit2,k = c(2,4,5))
print(p9)

Version Author Date
d707238 Peter Carbonetto 2020-10-06
db6135c Peter Carbonetto 2020-09-21
b5e1a7e Peter Carbonetto 2020-09-20
4172024 Peter Carbonetto 2020-09-20

Topic 4 in particular corresponds closely to expression of Krt13 which was identified as being uniquely expressed by transitional “hillock” cells.

p10 <- pca_plot(fit2,fill = log10(counts[rows,"Krt13"])) +
       labs(fill = "log10(count)",title = "Krt13")
print(p10)

Version Author Date
d707238 Peter Carbonetto 2020-10-06
ab1ed99 Peter Carbonetto 2020-09-27
bf299b9 Peter Carbonetto 2020-09-27
0a8b571 Peter Carbonetto 2020-09-21
db6135c Peter Carbonetto 2020-09-21
4172024 Peter Carbonetto 2020-09-20
5361fdf Peter Carbonetto 2020-09-19
311b4e8 Peter Carbonetto 2020-09-19

We label the three more-or-less distinct subclusters as B, C and H, and assign the remaining “in between” data points to a new “background cluster”, B+C.

pca <- prcomp(fit2$L)$x
pc1 <- pca[,1]
pc2 <- pca[,2]
y   <- rep("B+C",nrow(pca))
y[pc1 < 0.1] <- "B"
y[pc1 > 0.4 & pc2 < 0.45] <- "C"
y[pc2 > 0.55] <- "H"
x[rows] <- y

In summary, we have subdivided the droplet data into 8 subsets. The substructure is more clear when we plot PCs separately for the abundant and rare cell-types.

samples$cluster <- factor(x,c("B","C","B+C","H","Cil","T+N","G","U"))
abundant        <- c("B","C","B+C","H")
rare            <- c("Cil","T+N","G","U")
cluster_colors <- c("royalblue",   # B
                    "forestgreen", # C
                    "slategray",   # B+C
                    "turquoise",   # H
                    "firebrick",   # Cil
                    "darkorange",  # T+N
                    "gold",        # G
                    "gainsboro")   # U
rows1 <- which(is.element(samples$cluster,abundant))
rows2 <- which(is.element(samples$cluster,rare))
fit1  <- select(poisson2multinom(fit),loadings = rows1)
fit2  <- select(poisson2multinom(fit),loadings = rows2)
p11a <- pca_plot(fit1,fill = samples[rows1,"cluster"]) +
        scale_fill_manual(values = cluster_colors,drop = FALSE) +
        labs(fill = "cluster")
p11b <- pca_plot(fit2,fill = samples[rows2,"cluster"]) +
        scale_fill_manual(values = cluster_colors,drop = FALSE) +
        labs(fill = "cluster")
plot_grid(p11a,p11b,nrow = 1,ncol = 2)

Version Author Date
c679d14 Peter Carbonetto 2020-10-15
d707238 Peter Carbonetto 2020-10-06
4fe31a6 Peter Carbonetto 2020-09-22
db6135c Peter Carbonetto 2020-09-21

The clusters identified here correspond well to the Montoro et al (2018) clustering, with some exceptions (e.g., we do not identify an ionocytes cluster, and the neuroendocrine and tuft cells are included in the same cluster).

with(samples,table(tissue,cluster))
#                 cluster
# tissue              B    C  B+C    H  Cil  T+N    G    U
#   Basal          3682   16  142    5    0    0    0    0
#   Ciliated          1   13    4    0  371    5    0   31
#   Club             93 1878  411  192    0    0    2    2
#   Goblet            2   20    1    0    0    0   42    0
#   Ionocyte          9    0    1    0    0    1    1   14
#   Neuroendocrine   27    4    6    0    0   51    0    8
#   Tuft             27    5    5    0    1  111    2    7

This close correspondence is also clear from the PCA plots:

tissue_colors <- c("royalblue",   # basal
                   "firebrick",   # ciliated
                   "forestgreen", # club
                   "gold",        # goblet
                   "darkmagenta", # ionocyte
                   "darkorange",  # neuroendocrine
                   "skyblue")     # tuft
p12a <- pca_plot(fit1,fill = samples[rows1,"tissue"]) +
        scale_fill_manual(values = tissue_colors,drop = FALSE) +
        labs(fill = "cluster")
p12b <- pca_plot(fit2,fill = samples[rows2,"tissue"]) +
        scale_fill_manual(values = tissue_colors,drop = FALSE) +
        labs(fill = "cluster")
plot_grid(p12a,p12b,nrow = 1,ncol = 2)

Version Author Date
4cb48ba Peter Carbonetto 2020-10-15
c679d14 Peter Carbonetto 2020-10-15

By computing inter-cluster and inter-topic total variation distances in relative expression levels, we see that the clusters identified above show greater differentiation in gene expression, and the topics show more differentiation than the clusters.

fit_montoro <- init_poisson_nmf_from_clustering(counts,samples$tissue)
fit_cluster <- init_poisson_nmf_from_clustering(counts,samples$cluster)
fit_merge   <- merge_topics(poisson2multinom(fit),c("k5","k7"))
d_montoro   <- totalvardist(poisson2multinom(fit_montoro)$F)
d_cluster   <- totalvardist(poisson2multinom(fit_cluster)$F[,-c(3,8)])
d_topics    <- totalvardist(fit_merge$F[,-3])
cat("Montoro et al (2018) clustering:\n")
print(d_montoro,digits = 3)
cat("Our clustering:\n")
print(d_cluster,digits = 3)
cat("Topics:\n")
print(d_topics,digits = 3)
# Montoro et al (2018) clustering:
#                Basal Ciliated  Club Goblet Ionocyte Neuroendocrine  Tuft
# Basal          0.000    0.362 0.446  0.579    0.262          0.236 0.272
# Ciliated       0.362    0.000 0.487  0.587    0.362          0.340 0.351
# Club           0.446    0.487 0.000  0.445    0.497          0.425 0.472
# Goblet         0.579    0.587 0.445  0.000    0.589          0.515 0.553
# Ionocyte       0.262    0.362 0.497  0.589    0.000          0.275 0.294
# Neuroendocrine 0.236    0.340 0.425  0.515    0.275          0.000 0.214
# Tuft           0.272    0.351 0.472  0.553    0.294          0.214 0.000
# Our clustering:
#         B     C     H   Cil   T+N     G
# B   0.000 0.511 0.347 0.390 0.351 0.626
# C   0.511 0.000 0.523 0.579 0.632 0.574
# H   0.347 0.523 0.000 0.422 0.436 0.659
# Cil 0.390 0.579 0.422 0.000 0.391 0.658
# T+N 0.351 0.632 0.436 0.391 0.000 0.681
# G   0.626 0.574 0.659 0.658 0.681 0.000
# Topics:
#          k1    k2    k4    k6 k5+k7
# k1    0.000 0.821 0.826 0.810 0.797
# k2    0.821 0.000 0.381 0.409 0.695
# k4    0.826 0.381 0.000 0.427 0.681
# k6    0.810 0.409 0.427 0.000 0.705
# k5+k7 0.797 0.695 0.681 0.705 0.000

Here is a plot summarizing these differences:

pdat <-
  rbind(data.frame(method="montoro.et.al",d=d_montoro[upper.tri(d_montoro)]),
        data.frame(method="clusters",     d=d_cluster[upper.tri(d_cluster)]),
        data.frame(method="topics",       d=d_topics[upper.tri(d_topics)]))
p13 <- ggplot(pdat,aes(x = method,y = d)) +
  geom_boxplot(width = 0.25) +
  labs(x = "",y = "total variation dist") +
  theme_cowplot(font_size = 9)
print(p13)

Version Author Date
c679d14 Peter Carbonetto 2020-10-15
d9bf10d Peter Carbonetto 2020-10-11
b6374a1 Peter Carbonetto 2020-10-11

This next plot provides a more direct comparison of the total variation distances among the 5 clusters that are comparable to the Montoro et al clusters:

fit_montoro <- merge_topics(poisson2multinom(fit_montoro),
                            c("Tuft","Neuroendocrine"))
d_montoro <- totalvardist(fit_montoro$F[,c("Basal","Ciliated","Club","Goblet",
                                           "Tuft+Neuroendocrine")])
d_cluster <-
  totalvardist(poisson2multinom(fit_cluster)$F[,c("B","Cil","C","G","T+N")])
pdat <- data.frame(montoro  = d_montoro[upper.tri(d_montoro)],
                   clusters = d_cluster[upper.tri(d_cluster)])
p14 <- ggplot(pdat,aes(x = montoro,y = clusters)) +
  geom_point(shape = 21,size = 2,color = "white",fill = "dodgerblue") +
  geom_abline(intercept = 0,slope = 1,color = "black",linetype = "dotted") +
  xlim(0.2,0.7) + 
  ylim(0.2,0.7) + 
  labs(x = "Montoro et al clusters",y = "our clusters") +
  theme_cowplot(font_size = 9)
print(p14)

Version Author Date
c679d14 Peter Carbonetto 2020-10-15

Structure plot

The structure plot summarizes the topic proportions in each of these 8 subsets:

set.seed(1)
topic_colors <- c("gold","royalblue","salmon","turquoise","olivedrab",
                  "firebrick","forestgreen")
topics <- c(3,4,5,1,7,2,6)
rows <- sort(c(sample(which(samples$cluster == "B"),800),
               sample(which(samples$cluster == "C"),800),
               which(samples$cluster == "B+C"),
               which(samples$cluster == "H"),
               which(samples$cluster == "Cil"),
               which(samples$cluster == "T+N"),
               which(samples$cluster == "G"),
               which(samples$cluster == "U")))
p15 <- structure_plot(select(poisson2multinom(fit),loadings = rows),
                      grouping = samples[rows,"cluster"],
                      topics = topics,colors = topic_colors[topics],
                      perplexity = c(70,70,30,30,50,30,12,18),
                      n = Inf,gap = 30,num_threads = 4,verbose = FALSE)
print(p15)

Version Author Date
db6135c Peter Carbonetto 2020-09-21
b5e1a7e Peter Carbonetto 2020-09-20
4172024 Peter Carbonetto 2020-09-20

Based on this structure plot, and the above results, we roughly subdivide the droplet data into two: (1) the Cil, T+N and G clusters that give rise to well-separated clusters, and (2) the B, C, B+C and H subsets that contain interesting substructure but much less distinct clustering. Therefore,the cluster labels B, C, B+C and H are useful as a guide but should be taken with a grain of salt as the boundaries between these clusters are somewhat arbitrary.

Note the distribution of the topics in cluster C suggests that there is further substantial heterogeneity in these cells beyond what can be captured by identifying “hard” clusters. In particular, there is additional continuous variation in gene expression primarily captured by topics 5 and 7:

p16 <- pca_plot(fit1,pcs = 2:3,k = c(4,5,7))
print(p16)

Version Author Date
5510fd5 Peter Carbonetto 2020-10-06
d707238 Peter Carbonetto 2020-10-06
3bada76 Peter Carbonetto 2020-10-04

Although subtle, there is variation in topics 2 and 6 within the T+N cluster that tracks closely with the tuft (here signaled by gene Gnat3) and pulmonary neuroendocrine (Chga) cell-types:

p17 <- pca_plot(poisson2multinom(fit),k = 2)
p18 <- pca_plot(poisson2multinom(fit),k = 6)
p19 <- pca_plot(poisson2multinom(fit),fill = log10(counts[,"Chga"])) +
       labs(fill = "log10(count)",title = "Chga")
p20 <- pca_plot(poisson2multinom(fit),fill = log10(counts[,"Gnat3"])) +
       labs(fill = "log10(count)",title = "Gnat3")
plot_grid(p17,p18,p19,p20)

Version Author Date
d707238 Peter Carbonetto 2020-10-06
3bada76 Peter Carbonetto 2020-10-04

Analysis of single-cell likelihoods

Add text.

fit_merge      <- merge_topics(poisson2multinom(fit),c("k5","k7"))
fit_cluster    <- init_poisson_nmf_from_clustering(counts,samples$cluster)
fit_montoro    <- init_poisson_nmf_from_clustering(counts,samples$tissue)
fit_cluster    <- poisson2multinom(fit_cluster)
fit_montoro    <- poisson2multinom(fit_montoro)
loglik_topics  <- loglik_multinom_topic_model(counts,fit_merge)
loglik_cluster <- loglik_multinom_topic_model(counts,fit_cluster)
loglik_montoro <- loglik_multinom_topic_model(counts,fit_montoro)

Add text here.

minloglik <- -20000
p1 <- loglik_scatterplot(loglik_montoro,loglik_cluster,samples$tissue,"Basal",
                         "royalblue",minloglik,"Montoro et al (2018) cluster",
                         "our clusters")
p2 <- loglik_scatterplot(loglik_montoro,loglik_cluster,samples$tissue,"Club",
                         "forestgreen",minloglik,"Montoro et al (2018) cluster",
                         "our clusters")
p3 <- loglik_scatterplot(loglik_montoro,loglik_cluster,samples$tissue,
                         "Ciliated","firebrick",minloglik,
                         "Montoro et al (2018) cluster","our clusters")
p4 <- loglik_scatterplot(loglik_montoro,loglik_cluster,samples$tissue,
                         "Neuroendocrine","darkorange",minloglik,
                         "Montoro et al (2018) cluster","our clusters")
p5 <- loglik_scatterplot(loglik_montoro,loglik_cluster,samples$tissue,"Tuft",
                         "dodgerblue",minloglik,"Montoro et al (2018) cluster",
                         "our clusters")
p6 <- loglik_scatterplot(loglik_montoro,loglik_cluster,samples$tissue,"Goblet",
                         "gold",minloglik,"Montoro et al (2018) cluster",
                         "our clusters")
plot_grid(p1,p2,p3,p4,p5,p6,nrow = 2,ncol = 3)

Add text here.

p7  <- loglik_scatterplot(loglik_cluster,loglik_topics,samples$cluster,"B",
                          "royalblue",minloglik,"cluster","topics")
p8  <- loglik_scatterplot(loglik_cluster,loglik_topics,samples$cluster,"C",
                          "forestgreen",minloglik,"cluster","topics")
p9  <- loglik_scatterplot(loglik_cluster,loglik_topics,samples$cluster,"Cil",
                          "firebrick",minloglik,"cluster","topics")
p10 <- loglik_scatterplot(loglik_cluster,loglik_topics,samples$cluster,"H",
                          "turquoise",minloglik,"cluster","topics")
p11 <- loglik_scatterplot(loglik_cluster,loglik_topics,samples$cluster,"T+N",
                          "darkorange",minloglik,"cluster","topics")
p12 <- loglik_scatterplot(loglik_cluster,loglik_topics,samples$cluster,"G",
                          "gold",minloglik,"cluster","topics")
plot_grid(p7,p8,p9,p10,p11,p12,nrow = 2,ncol = 3)

Add text here.

p13 <- loglik_scatterplot(loglik_montoro,loglik_topics,samples$tissue,"Basal",
                          "royalblue",minloglik,"Montoro et al (2018) cluster",
                          "topics")
p14 <- loglik_scatterplot(loglik_montoro,loglik_topics,samples$tissue,"Club",
                          "forestgreen",minloglik,
                          "Montoro et al (2018) cluster","topics")
p15 <- loglik_scatterplot(loglik_montoro,loglik_topics,samples$tissue,
                          "Ciliated","firebrick",minloglik,
                          "Montoro et al (2018) cluster","topics")
p16 <- loglik_scatterplot(loglik_montoro,loglik_topics,samples$tissue,
                          "Neuroendocrine","darkorange",minloglik,
                          "Montoro et al (2018) cluster","topics")
p17 <- loglik_scatterplot(loglik_montoro,loglik_topics,samples$tissue,"Tuft",
                          "dodgerblue",minloglik,"Montoro et al (2018) cluster",
                          "topics")
p18 <- loglik_scatterplot(loglik_montoro,loglik_topics,samples$tissue,
                          "Ionocyte","darkmagenta",minloglik,
                          "Montoro et al (2018) cluster","topics")
p19 <- loglik_scatterplot(loglik_montoro,loglik_topics,samples$tissue,
                          "Goblet","gold",minloglik,
                          "Montoro et al (2018) cluster","topics")
plot_grid(p13,p14,p15,p16,p17,p18,p19,nrow = 3,ncol = 3)

Save results

Save the clustering of the droplet data to an RDS file.

saveRDS(samples,"clustering-droplet.rds")

sessionInfo()
# R version 3.6.2 (2019-12-12)
# Platform: x86_64-apple-darwin15.6.0 (64-bit)
# Running under: macOS Catalina 10.15.6
# 
# Matrix products: default
# BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
# LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
# 
# locale:
# [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
# 
# attached base packages:
# [1] stats     graphics  grDevices utils     datasets  methods   base     
# 
# other attached packages:
# [1] cowplot_1.0.0      ggplot2_3.3.0      fastTopics_0.3-184 dplyr_0.8.3       
# [5] Matrix_1.2-18     
# 
# loaded via a namespace (and not attached):
#  [1] ggrepel_0.9.0        Rcpp_1.0.5           lattice_0.20-38     
#  [4] tidyr_1.0.0          prettyunits_1.1.1    assertthat_0.2.1    
#  [7] zeallot_0.1.0        rprojroot_1.3-2      digest_0.6.23       
# [10] R6_2.4.1             backports_1.1.5      MatrixModels_0.4-1  
# [13] evaluate_0.14        coda_0.19-3          httr_1.4.2          
# [16] pillar_1.4.3         rlang_0.4.5          progress_1.2.2      
# [19] lazyeval_0.2.2       data.table_1.12.8    irlba_2.3.3         
# [22] SparseM_1.78         hexbin_1.28.0        whisker_0.4         
# [25] rmarkdown_2.3        labeling_0.3         Rtsne_0.15          
# [28] stringr_1.4.0        htmlwidgets_1.5.1    munsell_0.5.0       
# [31] compiler_3.6.2       httpuv_1.5.2         xfun_0.11           
# [34] pkgconfig_2.0.3      mcmc_0.9-6           htmltools_0.4.0     
# [37] tidyselect_0.2.5     tibble_2.1.3         workflowr_1.6.2.9000
# [40] quadprog_1.5-8       viridisLite_0.3.0    crayon_1.3.4        
# [43] withr_2.1.2          later_1.0.0          MASS_7.3-51.4       
# [46] grid_3.6.2           jsonlite_1.6         gtable_0.3.0        
# [49] lifecycle_0.1.0      git2r_0.26.1         magrittr_1.5        
# [52] scales_1.1.0         RcppParallel_4.4.2   stringi_1.4.3       
# [55] farver_2.0.1         fs_1.3.1             promises_1.1.0      
# [58] vctrs_0.2.1          tools_3.6.2          glue_1.3.1          
# [61] purrr_0.3.3          hms_0.5.2            yaml_2.2.0          
# [64] colorspace_1.4-1     plotly_4.9.2         knitr_1.26          
# [67] quantreg_5.54        MCMCpack_1.4-5