Last updated: 2018-12-04
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(1)
The command set.seed(1)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 9a67b48
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: dsc/code/Wavelab850/MEXSource/CPAnalysis.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/DownDyadHi.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/DownDyadLo.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FAIPT.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FCPSynthesis.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FMIPT.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FWPSynthesis.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FWT2_PO.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FWT_PBS.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FWT_PO.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FWT_TI.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/IAIPT.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/IMIPT.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/IWT2_PO.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/IWT_PBS.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/IWT_PO.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/IWT_TI.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/LMIRefineSeq.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/MedRefineSeq.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/UpDyadHi.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/UpDyadLo.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/WPAnalysis.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/dct_ii.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/dct_iii.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/dct_iv.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/dst_ii.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/dst_iii.mexmac
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
In this analysis, we assess the ability of different signal denoising methods to recover the true signal after being provided with Gaussian-distributed observations of the signal. We consider scenarios in which the data have homoskedastic errors (constant variance) and heteroskedastic errors (non-constant variance).
Since the simulation experiments are computationally intensive, they are implemented separately (see the “dsc” directory in this git repository), and here we only create plots to summarize the results of these experiments.
Load the ggplot2 and cowplot packages, and the functions definining the mean and variances used to simulate the data.
library(ggplot2)
library(cowplot)
source("../code/signals.R")
Load the results of the simulation experiments.
load("../output/dscr.RData")
This plot reproduces Fig. 2 of the manuscript comparing the accuracy of estimated mean curves in the data sets simulated from the “Spikes” mean function with constant variance.
First, extract the results used to generate this plot.
homo.data.smash <-
res[res$.id == "sp.3.v1" &
res$method == "smash.s8",]
homo.data.smash.homo <-
res[res$.id == "sp.3.v1" &
res$method == "smash.homo.s8",]
homo.data.tithresh <-
res[res$.id == "sp.3.v1" &
res$method == "tithresh.homo.s8",]
homo.data.ebayes <-
res[res$.id == "sp.3.v1" &
res$method == "ebayesthresh",]
homo.data.smash.true <-
res[res$.id == "sp.3.v1" &
res$method == "smash.true.s8",]
homo.data <-
res[res$.id == "sp.3.v1" &
(res$method == "smash.s8" |
res$method == "ebayesthresh" |
res$method == "tithresh.homo.s8"),]
Transform these results into a data frame suitable for ggplot2.
pdat <-
rbind(data.frame(method = "smash",
method.type = "est",
mise = homo.data.smash$mise),
data.frame(method = "smash.homo",
method.type = "homo",
mise = homo.data.smash.homo$mise),
data.frame(method = "tithresh",
method.type = "homo",
mise = homo.data.tithresh$mise),
data.frame(method = "ebayesthresh",
method.type = "homo",
mise = homo.data.ebayes$mise),
data.frame(method = "smash.true",
method.type = "true",
mise = homo.data.smash.true$mise))
pdat <-
transform(pdat,
method = factor(method,
names(sort(tapply(pdat$mise,pdat$method,mean),
decreasing = TRUE))))
Create the combined boxplot and violin plot using ggplot2.
p <- ggplot(pdat,aes(x = method,y = mise,fill = method.type)) +
geom_violin(fill = "skyblue",color = "skyblue") +
geom_boxplot(width = 0.15,outlier.shape = NA) +
scale_y_continuous(breaks = seq(6,16,2)) +
scale_fill_manual(values = c("darkorange","dodgerblue","gold"),
guide = FALSE) +
coord_flip() +
labs(x = "",y = "MISE") +
theme(axis.line = element_blank(),
axis.ticks.y = element_blank())
print(p)
From this plot, we see that three versions of SMASH outperformed EbayesThresh and TI thresholding.
Next, we compare the same methods in simulated data sets with heteroskedastic errors.
In this scenario, data sets were simulated using the “Spikes” mean function and the “Clipped Blocks” variance function. The next couple plots reproduce part of Fig. 3 in the manuscript.
This plot shows the mean function as a block line, and the +/- 2 standard deviations as orange lines:
t <- (1:1024)/1024
mu <- spikes.fn(t,"mean")
sigma.ini <- sqrt(cblocks.fn(t,"var"))
sd.fn <- sigma.ini/mean(sigma.ini) * sd(mu)/3
par(cex.axis = 1,cex.lab = 1.25)
plot(mu,type = "l", ylim = c(-0.05,1),xlab = "position",ylab = "",
lwd = 1.75,xaxp = c(0,1024,4),yaxp = c(0,1,4))
lines(mu + 2*sd.fn,col = "darkorange",lty = 5,lwd = 1.75)
lines(mu - 2*sd.fn,col = "darkorange",lty = 5,lwd = 1.75)
Extract the results from running the simulations.
hetero.data.smash <-
res[res$.id == "sp.3.v5" & res$method == "smash.s8",]
hetero.data.smash.homo <-
res[res$.id == "sp.3.v5" & res$method == "smash.homo.s8",]
hetero.data.tithresh.homo <-
res[res$.id == "sp.3.v5" & res$method == "tithresh.homo.s8",]
hetero.data.tithresh.rmad <-
res[res$.id == "sp.3.v5" & res$method == "tithresh.rmad.s8",]
hetero.data.tithresh.smash <-
res[res$.id == "sp.3.v5" & res$method == "tithresh.smash.s8",]
hetero.data.tithresh.true <-
res[res$.id == "sp.3.v5" & res$method == "tithresh.true.s8",]
hetero.data.ebayes <-
res[res$.id == "sp.3.v5" & res$method == "ebayesthresh",]
hetero.data.smash.true <-
res[res$.id == "sp.3.v5" & res$method == "smash.true.s8",]
Transform these results into a data frame suitable for ggplot2.
pdat <-
rbind(data.frame(method = "smash",
method.type = "est",
mise = hetero.data.smash$mise),
data.frame(method = "smash.homo",
method.type = "homo",
mise = hetero.data.smash.homo$mise),
data.frame(method = "tithresh.rmad",
method.type = "tithresh",
mise = hetero.data.tithresh.rmad$mise),
data.frame(method = "tithresh.smash",
method.type = "tithresh",
mise = hetero.data.tithresh.smash$mise),
data.frame(method = "tithresh.true",
method.type = "tithresh",
mise = hetero.data.tithresh.true$mise),
data.frame(method = "ebayesthresh",
method.type = "homo",
mise = hetero.data.ebayes$mise),
data.frame(method = "smash.true",
method.type = "true",
mise = hetero.data.smash.true$mise))
pdat <-
transform(pdat,
method = factor(method,
names(sort(tapply(pdat$mise,pdat$method,mean),
decreasing = TRUE))))
Create the combined boxplot and violin plot using ggplot2.
p <- ggplot(pdat,aes(x = method,y = mise,fill = method.type)) +
geom_violin(fill = "skyblue",color = "skyblue") +
geom_boxplot(width = 0.15,outlier.shape = NA) +
scale_fill_manual(values=c("darkorange","dodgerblue","limegreen","gold"),
guide = FALSE) +
coord_flip() +
scale_y_continuous(breaks = seq(10,70,10)) +
labs(x = "",y = "MISE") +
theme(axis.line = element_blank(),
axis.ticks.y = element_blank())
print(p)
In the “Spikes” scenario, we see that SMASH, when allowing for heteroskedastic errors, outperforms EbayesThresh and all variants of TI thresholding (including TI thresholding with the true variance). Further, SMASH performs almost as well when estimating the variance compared to when provided with the true variance.
In this next scenario, the data sets were simulated using the “Corner” mean function and the “Doppler” variance function. These plots were also used for Fig. 3 of the manuscript.
This plot shows the mean function as a block line, and the +/- 2 standard deviations as orange lines:
mu <- cor.fn(t,"mean")
sigma.ini <- sqrt(doppler.fn(t,"var"))
sd.fn <- sigma.ini/mean(sigma.ini) * sd(mu)/3
plot(mu,type = "l", ylim = c(-0.05,1),xlab = "position",ylab = "",
lwd = 1.75,xaxp = c(0,1024,4),yaxp = c(0,1,4))
lines(mu + 2*sd.fn,col = "darkorange",lty = 5,lwd = 1.75)
lines(mu - 2*sd.fn,col = "darkorange",lty = 5,lwd = 1.75)
Extract the results from running these simulations.
hetero.data.smash.2 <-
res[res$.id == "cor.3.v3" & res$method == "smash.s8",]
hetero.data.smash.homo.2 <-
res[res$.id == "cor.3.v3" & res$method == "smash.homo.s8",]
hetero.data.tithresh.homo.2 <-
res[res$.id == "cor.3.v3" & res$method == "tithresh.homo.s8",]
hetero.data.tithresh.rmad.2 <-
res[res$.id == "cor.3.v3" & res$method == "tithresh.rmad.s8",]
hetero.data.tithresh.smash.2 <-
res[res$.id == "cor.3.v3" & res$method == "tithresh.smash.s8",]
hetero.data.tithresh.true.2 <-
res[res$.id == "cor.3.v3" & res$method == "tithresh.true.s8",]
hetero.data.ebayes.2 <-
res[res$.id == "cor.3.v3" & res$method == "ebayesthresh",]
hetero.data.smash.true.2 <-
res[res$.id == "cor.3.v3" & res$method == "smash.true.s8",]
Transform these results into a data frame suitable for ggplot2.
pdat <-
rbind(data.frame(method = "smash",
method.type = "est",
mise = hetero.data.smash.2$mise),
data.frame(method = "smash.homo",
method.type = "homo",
mise = hetero.data.smash.homo.2$mise),
data.frame(method = "tithresh.rmad",
method.type = "tithresh",
mise = hetero.data.tithresh.rmad.2$mise),
data.frame(method = "tithresh.smash",
method.type = "tithresh",
mise = hetero.data.tithresh.smash.2$mise),
data.frame(method = "tithresh.true",
method.type = "tithresh",
mise = hetero.data.tithresh.true.2$mise),
data.frame(method = "ebayesthresh",
method.type = "homo",
mise = hetero.data.ebayes.2$mise),
data.frame(method = "smash.true",
method.type = "true",
mise = hetero.data.smash.true.2$mise))
pdat <-
transform(pdat,
method = factor(method,
names(sort(tapply(pdat$mise,pdat$method,mean),
decreasing = TRUE))))
Create the combined boxplot and violin plot using ggplot2.
p <- ggplot(pdat,aes(x = method,y = mise,fill = method.type)) +
geom_violin(fill = "skyblue",color = "skyblue") +
geom_boxplot(width = 0.15,outlier.shape = NA) +
scale_fill_manual(values=c("darkorange","dodgerblue","limegreen","gold"),
guide = FALSE) +
coord_flip() +
scale_y_continuous(breaks = seq(1,5)) +
labs(x = "",y = "MISE") +
theme(axis.line = element_blank(),
axis.ticks.y = element_blank())
print(p)
Similar to the “Spikes” scenario, we see that the SMASH method, when allowing for heteroskedastic variances, outperforms both the TI thresholding and EbayesThresh approaches.
sessionInfo()
# R version 3.4.3 (2017-11-30)
# Platform: x86_64-apple-darwin15.6.0 (64-bit)
# Running under: macOS High Sierra 10.13.6
#
# Matrix products: default
# BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
# LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
#
# locale:
# [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#
# attached base packages:
# [1] stats graphics grDevices utils datasets methods base
#
# other attached packages:
# [1] cowplot_0.9.3 ggplot2_3.1.0
#
# loaded via a namespace (and not attached):
# [1] Rcpp_1.0.0 later_0.7.2 dscr_0.1-7
# [4] compiler_3.4.3 pillar_1.2.1 git2r_0.23.0
# [7] plyr_1.8.4 workflowr_1.1.1 bindr_0.1.1
# [10] R.methodsS3_1.7.1 R.utils_2.6.0 tools_3.4.3
# [13] digest_0.6.17 evaluate_0.11 tibble_1.4.2
# [16] gtable_0.2.0 pkgconfig_2.0.2 rlang_0.2.2
# [19] shiny_1.1.0 yaml_2.2.0 bindrcpp_0.2.2
# [22] withr_2.1.2 stringr_1.3.1 dplyr_0.7.6
# [25] knitr_1.20 rprojroot_1.3-2 grid_3.4.3
# [28] tidyselect_0.2.4 glue_1.3.0 R6_2.2.2
# [31] rmarkdown_1.10 purrr_0.2.5 magrittr_1.5
# [34] whisker_0.3-2 promises_1.0.1 backports_1.1.2
# [37] scales_0.5.0 htmltools_0.3.6 assertthat_0.2.0
# [40] xtable_1.8-2 mime_0.5 colorspace_1.4-0
# [43] httpuv_1.4.3 stringi_1.2.4 lazyeval_0.2.1
# [46] munsell_0.4.3 R.oo_1.21.0
This reproducible R Markdown analysis was created with workflowr 1.1.1