Last updated: 2018-12-06
workflowr checks: (Click a bullet for more information)Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
set.seed(1)
The command set.seed(1)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: dsc/code/Wavelab850/MEXSource/CPAnalysis.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/DownDyadHi.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/DownDyadLo.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FAIPT.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FCPSynthesis.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FMIPT.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FWPSynthesis.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FWT2_PO.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FWT_PBS.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FWT_PO.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/FWT_TI.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/IAIPT.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/IMIPT.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/IWT2_PO.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/IWT_PBS.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/IWT_PO.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/IWT_TI.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/LMIRefineSeq.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/MedRefineSeq.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/UpDyadHi.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/UpDyadLo.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/WPAnalysis.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/dct_ii.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/dct_iii.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/dct_iv.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/dst_ii.mexmac
Ignored: dsc/code/Wavelab850/MEXSource/dst_iii.mexmac
Unstaged changes:
Modified: analysis/gauss_shiny.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes. File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | c589dbb | Peter Carbonetto | 2018-12-06 | wflow_publish(c(“index.Rmd”, “gaussian_signals.Rmd”, |
html | 35f03c0 | Peter Carbonetto | 2018-12-04 | Changed title of gaussian_signals.Rmd. |
html | 6897465 | Peter Carbonetto | 2018-12-04 | Added gaussian_signals page to the home. |
Rmd | 7ebd899 | Peter Carbonetto | 2018-12-04 | wflow_publish(c(“gaussian_signals.Rmd”, “index.Rmd”)) |
html | f35239b | Peter Carbonetto | 2018-12-04 | Completed the gaussian_signals page. |
Rmd | 53df81d | Peter Carbonetto | 2018-12-04 | wflow_publish(“gaussian_signals.Rmd”) |
html | abc74e5 | Peter Carbonetto | 2018-12-04 | Added plots for for variance signals. |
Rmd | c8957e0 | Peter Carbonetto | 2018-12-04 | wflow_publish(“gaussian_signals.Rmd”) |
html | 1fe523e | Peter Carbonetto | 2018-12-04 | Adjusted the plots of the mean functions. |
Rmd | 1bddd73 | Peter Carbonetto | 2018-12-04 | wflow_publish(“gaussian_signals.Rmd”) |
html | dc4c6cd | Peter Carbonetto | 2018-12-04 | I now have plots of all the mean functions in gaussian_signals.Rmd. |
Rmd | a8b9722 | Peter Carbonetto | 2018-12-04 | wflow_publish(“gaussian_signals.Rmd”) |
Rmd | 2ab6ac0 | Peter Carbonetto | 2018-12-04 | wflow_publish(“gaussian_signals.Rmd”) |
Rmd | ee71f27 | Peter Carbonetto | 2018-12-04 | Made a few small adjustments to the text in the “gaussianmeanest” analysis. |
Load the ggplot2 and cowplot packages, and the functions definining the mean and variances used to simulate the data.
library(ggplot2)
library(cowplot)
source("../code/signals.R")
Here, n
specifies the length of the signals.
n = 1024
t = 1:n/n
Define the Spikes mean function.
mu.s = spike.f(t)
Define the Bumps variance function.
pos = c(0.1, 0.13, 0.15, 0.23, 0.25, 0.4, 0.44, 0.65, 0.76, 0.78, 0.81)
hgt = 2.97/5 * c(4, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2)
wth = c(0.005, 0.005, 0.006, 0.01, 0.01, 0.03, 0.01, 0.01, 0.005, 0.008, 0.005)
mu.b = rep(0, n)
for (j in 1:length(pos))
mu.b = mu.b + hgt[j]/((1 + (abs(t - pos[j])/wth[j]))^4)
Define the Doppler mean function.
mu.dop = dop.f(t)
mu.dop = 3/(max(mu.dop) - min(mu.dop)) * (mu.dop - min(mu.dop))
mu.dop.var = 10 * dop.f(t)
mu.dop.var = mu.dop.var - min(mu.dop.var)
Define the Angle mean function.
sig = ((2 * t + 0.5) * (t <= 0.15)) +
((-12 * (t - 0.15) + 0.8) * (t > 0.15 & t <= 0.2)) +
0.2 * (t > 0.2 & t <= 0.5) +
((6 * (t - 0.5) + 0.2) * (t > 0.5 & t <= 0.6)) +
((-10 * (t - 0.6) + 0.8) * (t > 0.6 & t <= 0.65)) +
((-0.5 * (t - 0.65) + 0.3) * (t > 0.65 & t <= 0.85)) +
((2 * (t - 0.85) + 0.2) * (t > 0.85))
mu.ang = 3/5 * ((5/(max(sig) - min(sig))) * sig - 1.6) - 0.0419569
Define the Block mean and variance functions.
pos = c(0.1, 0.13, 0.15, 0.23, 0.25, 0.4, 0.44, 0.65, 0.76, 0.78, 0.81)
hgt = 2.88/5 * c(4, (-5), 3, (-4), 5, (-4.2), 2.1, 4.3, (-3.1), 2.1, (-4.2))
mu.blk = rep(0, n)
for (j in 1:length(pos))
mu.blk = mu.blk + (1 + sign(t - pos[j])) * (hgt[j]/2)
mu.cblk = mu.blk
mu.cblk[mu.cblk < 0] = 0
Define the Blip mean function.
mu.blip = (0.32 + 0.6 * t +
0.3 * exp(-100 * (t - 0.3)^2)) * (t >= 0 & t <= 0.8) +
(-0.28 + 0.6 * t + 0.3 * exp(-100 * (t - 1.3)^2)) * (t > 0.8 & t <= 1)
Define the Corner mean function.
mu.cor = 623.87 * t^3 * (1 - 2 * t) * (t >= 0 & t <= 0.5) +
187.161 * (0.125 - t^3) * t^4 * (t > 0.5 & t <= 0.8) +
3708.470441 * (t - 1)^3 * (t > 0.8 & t <= 1)
mu.cor = (0.6/(max(mu.cor) - min(mu.cor))) * mu.cor
mu.cor = mu.cor - min(mu.cor) + 0.2
Define the rest of the mean functions.
mu.sp = (1 + mu.s)/5
mu.bump = (1 + mu.b)/5
mu.blk = 0.2 + 0.6 * (mu.blk - min(mu.blk))/max(mu.blk - min(mu.blk))
mu.ang = (1 + mu.ang)/5
mu.dop = (1 + mu.dop)/5
Define the variance functions.
var1 = rep(1, n)
var2 = (1e-02 + 4 * (exp(-550 * (t - 0.2)^2) +
exp(-200 * (t - 0.5)^2) +
exp(-950 * (t - 0.8)^2)))
var3 = (1e-02 + 2 * mu.dop.var)
var4 = 1e-02 + mu.b
var5 = 1e-02 + 1 * (mu.cblk - min(mu.cblk))/max(mu.cblk)
var1 = var1/2
var2 = var2/max(var2)
var3 = var3/max(var3)
var4 = var4/max(var4)
var5 = var5/max(var5)
These plots show each of the mean functions used in generating the Gaussian data sets.
plot_grid(qplot(t,mu.sp, geom="line",xlab="",ylab="",main="Spikes (sp)"),
qplot(t,mu.bump,geom="line",xlab="",ylab="",main="Bumps (bump)"),
qplot(t,mu.blk, geom="line",xlab="",ylab="",main="Blocks (blk)"),
qplot(t,mu.ang, geom="line",xlab="",ylab="",main="Angles (ang)"),
qplot(t,mu.dop, geom="line",xlab="",ylab="",main="Doppler (dop)"),
qplot(t,mu.blip,geom="line",xlab="",ylab="",main="Blip (blip)"),
qplot(t,mu.cor, geom="line",xlab="",ylab="",main="Corner (cor)"),
nrow = 4,ncol = 2)
These plots show the variance functions used in generating the Gaussian data sets. In practice, these functions are rescaled in the simulations to achieve the desired signal-to-noise ratios (see the paper for a more detailed explanation).
plot_grid(
qplot(t,var1,geom="line",xlab="",ylab="",main="Constant variance (v1)"),
qplot(t,var2,geom="line",xlab="",ylab="",main="Triple exponential (v2)"),
qplot(t,var3,geom="line",xlab="",ylab="",main="Doppler (v3)"),
qplot(t,var4,geom="line",xlab="",ylab="",main="Bumps (v4)"),
qplot(t,var5,geom="line",xlab="",ylab="",main="Clipped (v5)"),
nrow = 3,ncol = 2)
Version | Author | Date |
---|---|---|
abc74e5 | Peter Carbonetto | 2018-12-04 |
sessionInfo()
# R version 3.4.3 (2017-11-30)
# Platform: x86_64-apple-darwin15.6.0 (64-bit)
# Running under: macOS High Sierra 10.13.6
#
# Matrix products: default
# BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
# LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
#
# locale:
# [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#
# attached base packages:
# [1] stats graphics grDevices utils datasets methods base
#
# other attached packages:
# [1] cowplot_0.9.3 ggplot2_3.1.0
#
# loaded via a namespace (and not attached):
# [1] Rcpp_1.0.0 compiler_3.4.3 pillar_1.2.1
# [4] git2r_0.23.0 plyr_1.8.4 workflowr_1.1.1
# [7] bindr_0.1.1 R.methodsS3_1.7.1 R.utils_2.6.0
# [10] tools_3.4.3 digest_0.6.17 evaluate_0.11
# [13] tibble_1.4.2 gtable_0.2.0 pkgconfig_2.0.2
# [16] rlang_0.2.2 yaml_2.2.0 bindrcpp_0.2.2
# [19] withr_2.1.2 stringr_1.3.1 dplyr_0.7.6
# [22] knitr_1.20 rprojroot_1.3-2 grid_3.4.3
# [25] tidyselect_0.2.4 glue_1.3.0 R6_2.2.2
# [28] rmarkdown_1.10 purrr_0.2.5 magrittr_1.5
# [31] whisker_0.3-2 backports_1.1.2 scales_0.5.0
# [34] htmltools_0.3.6 assertthat_0.2.0 colorspace_1.4-0
# [37] labeling_0.3 stringi_1.2.4 lazyeval_0.2.1
# [40] munsell_0.4.3 R.oo_1.21.0
This reproducible R Markdown analysis was created with workflowr 1.1.1