Last updated: 2018-09-28

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(1)

    The command set.seed(1) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: ac33b5e

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    dsc/code/Wavelab850/MEXSource/CPAnalysis.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/DownDyadHi.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/DownDyadLo.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/FAIPT.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/FCPSynthesis.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/FMIPT.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/FWPSynthesis.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/FWT2_PO.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/FWT_PBS.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/FWT_PO.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/FWT_TI.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/IAIPT.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/IMIPT.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/IWT2_PO.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/IWT_PBS.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/IWT_PO.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/IWT_TI.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/LMIRefineSeq.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/MedRefineSeq.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/UpDyadHi.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/UpDyadLo.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/WPAnalysis.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/dct_ii.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/dct_iii.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/dct_iv.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/dst_ii.mexmac
        Ignored:    dsc/code/Wavelab850/MEXSource/dst_iii.mexmac
    
    Unstaged changes:
        Modified:   NOTES.txt
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd ac33b5e Peter Carbonetto 2018-09-28 wflow_publish(“gaussian.mean.est.Rmd”)
    Rmd 49dc15d Peter Carbonetto 2018-09-28 I have a complete first draft of the gaussian.mean.est.Rmd analysis.
    html 49dc15d Peter Carbonetto 2018-09-28 I have a complete first draft of the gaussian.mean.est.Rmd analysis.
    html 6861273 Peter Carbonetto 2018-09-28 First commit of gaussian.mean.est.html.
    Rmd f5f9258 Peter Carbonetto 2018-09-28 workflowr::wflow_publish(“gaussian.mean.est.Rmd”)


In this analysis, we assess the ability of different signal denoising methods to recover the true signal after being provided with Gaussian-distributed observations of the signal. We consider scenarios in which the data have homoskedastic errors (constant variance) and heteroskedastic errors (non-constant variance).

Since the simulation experiments are very computationally intensive, they are implemented separately (see the “dsc” directory in this git repository), and here we only create plots to summarize the results of these experiments.

Set up environment

Load the ggplot2 and cowplot packages, and the functions definining the mean and variances used to simulate the data.

library(ggplot2)
library(cowplot)
source("../code/signals.R")

Load results

Load the results of the simulation experiments.

load("../output/gaus-dscr.RData")

Simulated data with constant variances

This plot reproduces Fig. 2 of the manuscript comparing the accuracy of estimated mean curves in the data sets simulated from the “Spikes” mean function with constant variance.

First, extract the results used to generate this plot.

homo.data.smash <-
  res[res$.id    == "sp.3.v1" &
      res$method == "smash.s8",]
homo.data.smash.homo <-
  res[res$.id    == "sp.3.v1" &
      res$method == "smash.homo.s8",]
homo.data.tithresh <-
  res[res$.id == "sp.3.v1" &
      res$method == "tithresh.homo.s8",]
homo.data.ebayes <-
  res[res$.id    == "sp.3.v1" &
      res$method == "ebayesthresh",]
homo.data.smash.true <-
  res[res$.id == "sp.3.v1" &
  res$method  == "smash.true.s8",]
homo.data <-
  res[res$.id == "sp.3.v1" &
  (res$method == "smash.s8" |
   res$method == "ebayesthresh" |
   res$method == "tithresh.homo.s8"),]

Transform these results into a data frame suitable for ggplot2.

pdat <-
  rbind(data.frame(method      = "smash",
                   method.type = "est",
                   mise        = homo.data.smash$mise),
        data.frame(method      = "smash.homo",
                   method.type = "homo",
                   mise        = homo.data.smash.homo$mise),
        data.frame(method      = "tithresh",
                   method.type = "homo",
                   mise        = homo.data.tithresh$mise),
        data.frame(method      = "ebayesthresh",
                   method.type = "homo",
                   mise        = homo.data.ebayes$mise),
        data.frame(method      = "smash.true",
                   method.type = "true",
                   mise        = homo.data.smash.true$mise))
pdat <-
  transform(pdat,
            method = factor(method,
                            names(sort(tapply(pdat$mise,pdat$method,mean),
                                       decreasing = TRUE))))

Create the combined boxplot and violin plot using ggplot2.

p <- ggplot(pdat,aes(x = method,y = mise,fill = method.type)) +
     geom_violin(fill = "skyblue",color = "skyblue") +
     geom_boxplot(width = 0.15,outlier.shape = NA) +
     scale_y_continuous(breaks = seq(6,16,2)) +
     scale_fill_manual(values = c("darkorange","dodgerblue","gold"),
                       guide = FALSE) +
     coord_flip() +
     labs(x = "",y = "MISE") +
     theme(axis.line = element_blank(),
           axis.ticks.y = element_blank())
print(p)

Expand here to see past versions of plot-1-create-1.png:
Version Author Date
49dc15d Peter Carbonetto 2018-09-28
6861273 Peter Carbonetto 2018-09-28

From this plot, we see that three versions of SMASH outperformed EbayesThresh and TI thresholding.

Next, we compare the same methods in simulated data sets with heteroskedastic errors.

Simulated data with heteroskedastic errors: “Spikes” mean signal and “Clipped Blocks” variance

In this scenario, data sets were simulated using the “Spikes” mean function and the “Clipped Blocks” variance function. The next couple plots reproduce part of Fig. 3 in the manuscript.

This plot shows the mean function as a block line, and the +/- 2 standard deviations as orange lines:

t         <- (1:1024)/1024
mu        <- spikes.fn(t,"mean")
sigma.ini <- sqrt(cblocks.fn(t,"var"))
sd.fn     <- sigma.ini/mean(sigma.ini) * sd(mu)/3
par(cex.axis = 1,cex.lab = 1.25)
plot(mu,type = "l", ylim = c(-0.05,1),xlab = "position",ylab = "",
     lwd = 1.75,xaxp = c(0,1024,4),yaxp = c(0,1,4))
lines(mu + 2*sd.fn,col = "darkorange",lty = 5,lwd = 1.75)
lines(mu - 2*sd.fn,col = "darkorange",lty = 5,lwd = 1.75)

Extract the results from running the simulations.

hetero.data.smash <-
  res[res$.id == "sp.3.v5" & res$method == "smash.s8",]
hetero.data.smash.homo <-
  res[res$.id == "sp.3.v5" & res$method == "smash.homo.s8",]
hetero.data.tithresh.homo <-
  res[res$.id == "sp.3.v5" & res$method == "tithresh.homo.s8",]
hetero.data.tithresh.rmad <-
  res[res$.id == "sp.3.v5" & res$method == "tithresh.rmad.s8",]
hetero.data.tithresh.smash <-
  res[res$.id == "sp.3.v5" & res$method == "tithresh.smash.s8",]
hetero.data.tithresh.true <-
  res[res$.id == "sp.3.v5" & res$method == "tithresh.true.s8",]
hetero.data.ebayes <-
  res[res$.id == "sp.3.v5" & res$method == "ebayesthresh",]
hetero.data.smash.true <-
  res[res$.id == "sp.3.v5" & res$method == "smash.true.s8",]

Transform these results into a data frame suitable for ggplot2.

pdat <-
  rbind(data.frame(method      = "smash",
                   method.type = "est",
                   mise        = hetero.data.smash$mise),
        data.frame(method      = "smash.homo",
                   method.type = "homo",
                   mise        = hetero.data.smash.homo$mise),
        data.frame(method      = "tithresh.rmad",
                   method.type = "tithresh",
                   mise        = hetero.data.tithresh.rmad$mise),
        data.frame(method      = "tithresh.smash",
                   method.type = "tithresh",
                   mise        = hetero.data.tithresh.smash$mise),
        data.frame(method      = "tithresh.true",
                   method.type = "tithresh",
                   mise        = hetero.data.tithresh.true$mise),
        data.frame(method      = "ebayesthresh",
                   method.type = "homo",
                   mise        = hetero.data.ebayes$mise),
        data.frame(method      = "smash.true",
                   method.type = "true",
                   mise        = hetero.data.smash.true$mise))
pdat <-
  transform(pdat,
            method = factor(method,
                            names(sort(tapply(pdat$mise,pdat$method,mean),
                                       decreasing = TRUE))))

Create the combined boxplot and violin plot using ggplot2.

p <- ggplot(pdat,aes(x = method,y = mise,fill = method.type)) +
     geom_violin(fill = "skyblue",color = "skyblue") +
     geom_boxplot(width = 0.15,outlier.shape = NA) +
     scale_fill_manual(values=c("darkorange","dodgerblue","limegreen","gold"),
                       guide = FALSE) +
     coord_flip() +
     scale_y_continuous(breaks = seq(10,70,10)) +
     labs(x = "",y = "MISE") +
     theme(axis.line = element_blank(),
           axis.ticks.y = element_blank())
print(p)

In the “Spikes” scenario, we see that SMASH, when allowing for heteroskedastic errors, outperforms EbayesThresh and all variants of TI thresholding (including TI thresholding with the true variance). Further, SMASH performs almost as well when estimating the variance compared to when provided with the true variance.

Simulated data with heteroskedastic errors: “Corner” mean signal and “Doppler” variance

In this next scenario, the data sets were simulated using the “Corner” mean function and the “Doppler” variance function. These plots were also used for Fig. 3 of the manuscript.

This plot shows the mean function as a block line, and the +/- 2 standard deviations as orange lines:

mu        <- cor.fn(t,"mean") 
sigma.ini <- sqrt(doppler.fn(t,"var"))
sd.fn     <- sigma.ini/mean(sigma.ini) * sd(mu)/3
plot(mu,type = "l", ylim = c(-0.05,1),xlab = "position",ylab = "",
     lwd = 1.75,xaxp = c(0,1024,4),yaxp = c(0,1,4))
lines(mu + 2*sd.fn,col = "darkorange",lty = 5,lwd = 1.75)
lines(mu - 2*sd.fn,col = "darkorange",lty = 5,lwd = 1.75)

Extract the results from running these simulations.

hetero.data.smash.2 <-
  res[res$.id == "cor.3.v3" & res$method == "smash.s8",]
hetero.data.smash.homo.2 <-
  res[res$.id == "cor.3.v3" & res$method == "smash.homo.s8",]
hetero.data.tithresh.homo.2 <-
  res[res$.id == "cor.3.v3" & res$method == "tithresh.homo.s8",]
hetero.data.tithresh.rmad.2 <-
  res[res$.id == "cor.3.v3" & res$method == "tithresh.rmad.s8",]
hetero.data.tithresh.smash.2 <-
  res[res$.id == "cor.3.v3" & res$method == "tithresh.smash.s8",]
hetero.data.tithresh.true.2 <-
  res[res$.id == "cor.3.v3" & res$method == "tithresh.true.s8",]
hetero.data.ebayes.2 <-
  res[res$.id == "cor.3.v3" & res$method == "ebayesthresh",]
hetero.data.smash.true.2 <-
  res[res$.id == "cor.3.v3" & res$method == "smash.true.s8",]

Transform these results into a data frame suitable for ggplot2.

pdat <-
  rbind(data.frame(method      = "smash",
                   method.type = "est",
                   mise        = hetero.data.smash.2$mise),
        data.frame(method      = "smash.homo",
                   method.type = "homo",
                   mise        = hetero.data.smash.homo.2$mise),
        data.frame(method      = "tithresh.rmad",
                   method.type = "tithresh",
                   mise        = hetero.data.tithresh.rmad.2$mise),
        data.frame(method      = "tithresh.smash",
                   method.type = "tithresh",
                   mise        = hetero.data.tithresh.smash.2$mise),
        data.frame(method      = "tithresh.true",
                   method.type = "tithresh",
                   mise        = hetero.data.tithresh.true.2$mise),
        data.frame(method      = "ebayesthresh",
                   method.type = "homo",
                   mise        = hetero.data.ebayes.2$mise),
        data.frame(method      = "smash.true",
                   method.type = "true",
                   mise        = hetero.data.smash.true.2$mise))
pdat <-
  transform(pdat,
            method = factor(method,
                            names(sort(tapply(pdat$mise,pdat$method,mean),
                                       decreasing = TRUE))))

Create the combined boxplot and violin plot using ggplot2.

p <- ggplot(pdat,aes(x = method,y = mise,fill = method.type)) +
     geom_violin(fill = "skyblue",color = "skyblue") +
     geom_boxplot(width = 0.15,outlier.shape = NA) +
     scale_fill_manual(values=c("darkorange","dodgerblue","limegreen","gold"),
                       guide = FALSE) +
     coord_flip() +
     scale_y_continuous(breaks = seq(1,5)) +
     labs(x = "",y = "MISE") +
     theme(axis.line = element_blank(),
           axis.ticks.y = element_blank())
print(p)

Similar to the “Spikes” scenario, we see that the SMASH method, when allowing for heteroskedastic variances, outperforms both the TI thresholding and EbayesThresh approaches.

Session information

sessionInfo()
# R version 3.4.3 (2017-11-30)
# Platform: x86_64-apple-darwin15.6.0 (64-bit)
# Running under: macOS High Sierra 10.13.6
# 
# Matrix products: default
# BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
# LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
# 
# locale:
# [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
# 
# attached base packages:
# [1] stats     graphics  grDevices utils     datasets  methods   base     
# 
# other attached packages:
# [1] cowplot_0.9.3 ggplot2_3.0.0
# 
# loaded via a namespace (and not attached):
#  [1] Rcpp_0.12.18      later_0.7.2       dscr_0.1-7       
#  [4] compiler_3.4.3    pillar_1.2.1      git2r_0.21.0     
#  [7] plyr_1.8.4        workflowr_1.1.1   bindr_0.1.1      
# [10] R.methodsS3_1.7.1 R.utils_2.6.0     tools_3.4.3      
# [13] digest_0.6.16     evaluate_0.10.1   tibble_1.4.2     
# [16] gtable_0.2.0      pkgconfig_2.0.1   rlang_0.2.1      
# [19] shiny_1.1.0       yaml_2.2.0        bindrcpp_0.2.2   
# [22] withr_2.1.2       stringr_1.3.0     dplyr_0.7.5      
# [25] knitr_1.20        rprojroot_1.3-2   grid_3.4.3       
# [28] tidyselect_0.2.4  glue_1.2.0        R6_2.2.2         
# [31] rmarkdown_1.9     purrr_0.2.5       magrittr_1.5     
# [34] whisker_0.3-2     promises_1.0.1    backports_1.1.2  
# [37] scales_0.5.0      htmltools_0.3.6   assertthat_0.2.0 
# [40] xtable_1.8-2      mime_0.5          colorspace_1.4-0 
# [43] httpuv_1.4.3      stringi_1.1.7     lazyeval_0.2.1   
# [46] munsell_0.4.3     R.oo_1.21.0

This reproducible R Markdown analysis was created with workflowr 1.1.1