Last updated: 2024-04-17

Checks: 7 0

Knit directory: spatialsnippets/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20231017) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 048c672. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    renv/library/
    Ignored:    renv/staging/

Unstaged changes:
    Modified:   analysis/e_DEPseudobulk.Rmd
    Modified:   renv.lock
    Modified:   renv/activate.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/e_CompositionChange.Rmd) and HTML (docs/e_CompositionChange.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 048c672 swbioinf 2024-04-17 wflow_publish("analysis/e_CompositionChange.Rmd")
html 456dd2f swbioinf 2024-04-10 Build site.
Rmd 8ef9cd9 swbioinf 2024-04-10 wflow_publish("analysis/")
html 30da140 Sarah Williams 2024-03-22 Build site.
Rmd 89c3371 Sarah Williams 2024-03-22 wflow_publish(c("analysis/index_data.Rmd", "analysis/index.Rmd",

Is there a difference in the celltype composition between individuals with Ulcerative colitis or Crohn’s disease, and Healthy controls?

Load libraries and data object

library(Seurat)
library(speckle)
library(tidyverse)
data_dir              <- file.path("~/projects/spatialsnippets/datasets/GSE234713_IBDcosmx_GarridoTrigo2023/processed_data") 
seurat_file_01_loaded <- file.path(data_dir, "GSE234713_CosMx_IBD_seurat_01_loaded.RDS")
so <- readRDS(seurat_file_01_loaded)

# MIGRATE TO DATA PREP >>>>
so$individual_code <- factor(substr(so$orig.ident,12,16))
so$tissue_sample   <- factor(substr(so$orig.ident,12,16))
so$fov_name        <- paste0(so$individual_code,"_", str_pad(so$fov, 3, 'left',pad='0'))
so$celltype_subset <- factor(so$celltype_subset)
# <<<<

Looking at the data

There are three indivduals per contidion (one tissue sample from each individual). With multiple fovs on each physical tissue sample.

select(as_tibble(so@meta.data), condition, individual_code, fov_name) %>%
  unique() %>% 
  group_by(condition, individual_code) %>% 
  summarise(n_fovs= n(), item = str_c(fov_name, collapse = ", "))
# A tibble: 9 × 4
# Groups:   condition [3]
  condition          individual_code n_fovs item                                
  <chr>              <fct>            <int> <chr>                               
1 Chrones's disease  CD_a                19 CD_a_001, CD_a_002, CD_a_003, CD_a_…
2 Chrones's disease  CD_b                19 CD_b_002, CD_b_003, CD_b_004, CD_b_…
3 Chrones's disease  CD_c                16 CD_c_001, CD_c_002, CD_c_003, CD_c_…
4 Healthy controls   HC_a                19 HC_a_001, HC_a_002, HC_a_003, HC_a_…
5 Healthy controls   HC_b                20 HC_b_001, HC_b_002, HC_b_003, HC_b_…
6 Healthy controls   HC_c                16 HC_c_001, HC_c_002, HC_c_003, HC_c_…
7 Ulcerative colitis UC_a                19 UC_a_001, UC_a_002, UC_a_005, UC_a_…
8 Ulcerative colitis UC_b                22 UC_b_001, UC_b_002, UC_b_003, UC_b_…
9 Ulcerative colitis UC_c                21 UC_c_001, UC_c_002, UC_c_003, UC_c_…

Full worked example

Count how many cells of each type in your data

celltype_summary_table <- so@meta.data %>% 
  group_by(condition, individual_code, fov_name, celltype_subset) %>%
  summarise(cells=n(), .groups = 'drop')

check for very low count groups

Here T cells are rare, but there are still a decent distribution of them with 10-100+ cells in a FOV.

If many of your celltypes, consider merging similar cell types (e.g. T cells rather than T cell subtypes)

ggplot(celltype_summary_table, aes(x=cells, col=celltype_subset)) +
  geom_density() +
  geom_rug(alpha=0.2) +
  scale_x_log10() +
  theme_bw() +
  ggtitle("Cells per FOV by celltype")

Version Author Date
456dd2f swbioinf 2024-04-10
30da140 Sarah Williams 2024-03-22

If you have alot of cell types, sometimes there can be very rare types that would be hard to detect differences in.

This can expecially happen if you’re using celltype assignment with a detailed reference. You might get a handful of irrelevant cell types called (e.g. 4 hepatocytes on a non-liver sample). No reasonable stats could be generated there, and leaving them in would mean a more extreme FDR adjustment.

celltype_summary_table.SingleR <- so@meta.data %>% 
  group_by(condition, individual_code, fov_name, celltype_SingleR2) %>%
  summarise(cells=n(), .groups = 'drop')



ggplot(celltype_summary_table.SingleR, aes(x=cells, col=celltype_SingleR2)) +
  geom_density() +
  geom_rug(alpha=0.2) +
  scale_x_log10() +
  theme_bw() +
  ggtitle("Cells per FOV by celltype")

Version Author Date
456dd2f swbioinf 2024-04-10
30da140 Sarah Williams 2024-03-22

Look at your samples.

ggplot(celltype_summary_table, aes(x=fov_name, y=cells, fill=celltype_subset)) +
  geom_bar(position="fill", stat="identity") + 
  theme_bw() +
  coord_flip() + 
  theme(legend.position = "bottom") +
  facet_wrap(~condition, ncol=3, scales = 'free_y') +
  scale_y_continuous(expand = c(0,0)) 

Version Author Date
456dd2f swbioinf 2024-04-10
30da140 Sarah Williams 2024-03-22

Calculate stats.

results.anova <- propeller(clusters= so$celltype_subset, 
          sample  = so$individual_code, 
          group   = so$condition)
results.anova
         BaselineProp PropMean.Chrones.s.disease PropMean.Healthy.controls
epi         0.2336112                 0.25884773                0.40528423
myeloids    0.1242437                 0.12933965                0.06414522
stroma      0.2397435                 0.21120914                0.24761081
plasmas     0.3692386                 0.36680895                0.25076104
tcells      0.0331629                 0.03379454                0.03219870
         PropMean.Ulcerative.colitis Fstatistic   P.Value       FDR
epi                       0.21803174  1.2861724 0.3216825 0.7534123
myeloids                  0.10678699  0.4468305 0.6528237 0.7534123
stroma                    0.27412907  0.4228438 0.6672889 0.7534123
plasmas                   0.38515297  0.3440366 0.7176420 0.7534123
tcells                    0.01589923  0.2920340 0.7534123 0.7534123
# If a column is preferred over rownames
results.anova.table <- rownames_to_column( results.anova, var="celltype_subset")
so.UCvsHC <- so[,so$condition %in% c("Healthy controls", "Ulcerative colitis")]


results.pair <- propeller( clusters= so.UCvsHC$celltype_subset, 
                           sample  = so.UCvsHC$individual_code, 
                           group   = so.UCvsHC$condition)

Code snippet

library(speckle)
# seurat object so
results_table <- propeller(clusters = so$cluster, 
                           sample   = so$sample, 
                           group    = so$condition)

Results

Paired

results.pair
         BaselineProp.clusters BaselineProp.Freq PropMean.Healthy.controls
epi                        epi        0.27031229                0.40528423
plasmas                plasmas        0.35035166                0.25076104
myeloids              myeloids        0.09419929                0.06414522
tcells                  tcells        0.02610896                0.03219870
stroma                  stroma        0.25902780                0.24761081
         PropMean.Ulcerative.colitis PropRatio Tstatistic    P.Value       FDR
epi                       0.21803174 1.8588314  1.9199430 0.06304484 0.3152242
plasmas                   0.38515297 0.6510687 -0.5012020 0.61936683 0.8296216
myeloids                  0.10678699 0.6006839 -0.4878233 0.62871700 0.8296216
tcells                    0.01589923 2.0251739  0.4385299 0.66369729 0.8296216
stroma                    0.27412907 0.9032636 -0.1354523 0.89303030 0.8930303
  • rownames : The tested cell types
  • BaselineProp : The overall proportion of the cell type across the dataset. (Overall, not a average of PropMean per group).
  • PropMean.X : The proportion of cell type in each group. Here that’s PropMean.Healthy.controls, PropMean.Ulcerative.colitis)
  • PropRatio : Ratio of proprotions of first to second group.
  • Tstatistic : The T statistic.
  • P.Value : P.value
  • FDR : A multiple-hypothesis corrected p-value

Anova

results.anova
         BaselineProp PropMean.Chrones.s.disease PropMean.Healthy.controls
epi         0.2336112                 0.25884773                0.40528423
myeloids    0.1242437                 0.12933965                0.06414522
stroma      0.2397435                 0.21120914                0.24761081
plasmas     0.3692386                 0.36680895                0.25076104
tcells      0.0331629                 0.03379454                0.03219870
         PropMean.Ulcerative.colitis Fstatistic   P.Value       FDR
epi                       0.21803174  1.2861724 0.3216825 0.7534123
myeloids                  0.10678699  0.4468305 0.6528237 0.7534123
stroma                    0.27412907  0.4228438 0.6672889 0.7534123
plasmas                   0.38515297  0.3440366 0.7176420 0.7534123
tcells                    0.01589923  0.2920340 0.7534123 0.7534123
  • rownames : The tested cell types
  • BaselineProp : The overall proportion of the cell type across the dataset. (Overall, not a average of PropMean per group).
  • PropMean.X : The proportion of cell type in each group. Here that’s PropMean.Chrones.s.disease, PropMean.Healthy.controls, PropMean.Ulcerative.colitis)
  • Fstatistic : The Fstatistic calculated.
  • P.Value : P.value
  • FDR : A multiple-hypothesis corrected p-value

More information


sessionInfo()
R version 4.3.2 (2023-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.4 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0

locale:
 [1] LC_CTYPE=en_AU.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_AU.UTF-8        LC_COLLATE=en_AU.UTF-8    
 [5] LC_MONETARY=en_AU.UTF-8    LC_MESSAGES=en_AU.UTF-8   
 [7] LC_PAPER=en_AU.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices datasets  utils     methods   base     

other attached packages:
 [1] lubridate_1.9.3    forcats_1.0.0      stringr_1.5.1      dplyr_1.1.4       
 [5] purrr_1.0.2        readr_2.1.5        tidyr_1.3.1        tibble_3.2.1      
 [9] ggplot2_3.5.0      tidyverse_2.0.0    speckle_1.2.0      Seurat_5.0.3      
[13] SeuratObject_5.0.1 sp_2.1-3           workflowr_1.7.1   

loaded via a namespace (and not attached):
  [1] RcppAnnoy_0.0.22            splines_4.3.2              
  [3] later_1.3.2                 bitops_1.0-7               
  [5] polyclip_1.10-6             fastDummies_1.7.3          
  [7] lifecycle_1.0.4             edgeR_4.0.16               
  [9] rprojroot_2.0.4             globals_0.16.3             
 [11] processx_3.8.4              lattice_0.22-6             
 [13] MASS_7.3-60.0.1             magrittr_2.0.3             
 [15] limma_3.58.1                plotly_4.10.4              
 [17] sass_0.4.9                  rmarkdown_2.26             
 [19] jquerylib_0.1.4             yaml_2.3.8                 
 [21] httpuv_1.6.15               sctransform_0.4.1          
 [23] spam_2.10-0                 spatstat.sparse_3.0-3      
 [25] reticulate_1.35.0           cowplot_1.1.3              
 [27] pbapply_1.7-2               RColorBrewer_1.1-3         
 [29] abind_1.4-5                 zlibbioc_1.48.2            
 [31] Rtsne_0.17                  GenomicRanges_1.54.1       
 [33] BiocGenerics_0.48.1         RCurl_1.98-1.14            
 [35] git2r_0.33.0                GenomeInfoDbData_1.2.11    
 [37] IRanges_2.36.0              S4Vectors_0.40.2           
 [39] ggrepel_0.9.5               irlba_2.3.5.1              
 [41] listenv_0.9.1               spatstat.utils_3.0-4       
 [43] goftest_1.2-3               RSpectra_0.16-1            
 [45] spatstat.random_3.2-3       fitdistrplus_1.1-11        
 [47] parallelly_1.37.1           leiden_0.4.3.1             
 [49] codetools_0.2-20            DelayedArray_0.28.0        
 [51] tidyselect_1.2.1            farver_2.1.1               
 [53] matrixStats_1.2.0           stats4_4.3.2               
 [55] spatstat.explore_3.2-7      jsonlite_1.8.8             
 [57] progressr_0.14.0            ggridges_0.5.6             
 [59] survival_3.5-8              tools_4.3.2                
 [61] ica_1.0-3                   Rcpp_1.0.12                
 [63] glue_1.7.0                  gridExtra_2.3              
 [65] SparseArray_1.2.4           xfun_0.43                  
 [67] MatrixGenerics_1.14.0       GenomeInfoDb_1.38.8        
 [69] withr_3.0.0                 BiocManager_1.30.22        
 [71] fastmap_1.1.1               fansi_1.0.6                
 [73] callr_3.7.6                 digest_0.6.35              
 [75] timechange_0.3.0            R6_2.5.1                   
 [77] mime_0.12                   colorspace_2.1-0           
 [79] scattermore_1.2             tensor_1.5                 
 [81] spatstat.data_3.0-4         utf8_1.2.4                 
 [83] generics_0.1.3              renv_1.0.5                 
 [85] data.table_1.15.4           httr_1.4.7                 
 [87] htmlwidgets_1.6.4           S4Arrays_1.2.1             
 [89] whisker_0.4.1               uwot_0.1.16                
 [91] pkgconfig_2.0.3             gtable_0.3.4               
 [93] lmtest_0.9-40               SingleCellExperiment_1.24.0
 [95] XVector_0.42.0              htmltools_0.5.8            
 [97] dotCall64_1.1-1             scales_1.3.0               
 [99] Biobase_2.62.0              png_0.1-8                  
[101] knitr_1.45                  rstudioapi_0.16.0          
[103] tzdb_0.4.0                  reshape2_1.4.4             
[105] nlme_3.1-164                cachem_1.0.8               
[107] zoo_1.8-12                  KernSmooth_2.23-22         
[109] parallel_4.3.2              miniUI_0.1.1.1             
[111] pillar_1.9.0                grid_4.3.2                 
[113] vctrs_0.6.5                 RANN_2.6.1                 
[115] promises_1.2.1              xtable_1.8-4               
[117] cluster_2.1.6               evaluate_0.23              
[119] cli_3.6.2                   locfit_1.5-9.9             
[121] compiler_4.3.2              rlang_1.1.3                
[123] crayon_1.5.2                future.apply_1.11.2        
[125] labeling_0.4.3              ps_1.7.6                   
[127] getPass_0.2-4               plyr_1.8.9                 
[129] fs_1.6.3                    stringi_1.8.3              
[131] viridisLite_0.4.2           deldir_2.0-4               
[133] munsell_0.5.1               lazyeval_0.2.2             
[135] spatstat.geom_3.2-9         Matrix_1.6-5               
[137] RcppHNSW_0.6.0              hms_1.1.3                  
[139] patchwork_1.2.0             future_1.33.2              
[141] statmod_1.5.0               shiny_1.8.1.1              
[143] highr_0.10                  SummarizedExperiment_1.32.0
[145] ROCR_1.0-11                 igraph_2.0.3               
[147] bslib_0.7.0