Last updated: 2020-10-12
Checks: 7 0
Knit directory: local_adaptation_sequence/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200709) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 50ddc20. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/genes.txt
Ignored: code/commands.txt
Ignored: data/1KBulls_ids.txt
Ignored: data/200907_SIM/
Ignored: data/200910_RAN/
Ignored: data/Bos_taurus.ARS-UCD1.2.101.gtf.gz
Ignored: data/Bos_taurus.ARS-UCD1.2.QTL.gff.gz
Ignored: data/Johnston_ATAC-seq/
Ignored: data/animal_table.rds
Ignored: data/bovine_demo.sample_metadata.csv
Ignored: data/prism_climate_data/
Ignored: data/prism_dataframe.csv
Ignored: data/uszips.csv
Ignored: desktop.ini
Ignored: output/200822_Lab_IDs.csv
Ignored: output/200907_Lab_IDs.csv
Ignored: output/200909_RAN_Lab_IDs.csv
Ignored: output/200910_RAN/200910_RAN.phenotypes.csv
Ignored: output/200910_RAN/200910_RAN.phenotypes.txt
Ignored: output/200910_RAN/200910_RAN_Lab_IDs.csv
Ignored: output/200910_RAN/gpsm/
Ignored: output/200910_RAN/gwas/
Ignored: output/200910_RAN/phenotypes/200910_RAN.generation_proxy.txt
Ignored: output/200910_RAN/phenotypes/200910_RAN.info.csv
Ignored: output/200910_RAN/phenotypes/200910_RAN.noLSF.allenv.txt
Ignored: output/200910_RAN/phenotypes/200910_RAN.phenotyped_ids.txt
Ignored: output/200910_RAN/phenotypes/200910_RAN.regions.txt
Ignored: output/200910_RAN/subsets/
Ignored: output/200910_RAN_Lab_IDs.csv
Ignored: output/coresnps.50K.refaltaltref.txt
Ignored: output/coresnps.50K.txt
Ignored: output/coresnps.850K.refaltaltref.txt
Ignored: output/desktop.ini
Ignored: output/k10.allvars.seed2.rds
Ignored: output/k9.allvars.seed1.rds
Ignored: output/k9.allvars.seed2.rds
Ignored: output/k9.threevars.seed1.rds
Ignored: output/k9.threevars.seed2.rds
Ignored: output/kmeans_plotlist.RDS
Ignored: output/zipcode_zones.csv
Untracked files:
Untracked: analysis/Region_FST.Rmd
Untracked: analysis/selection_scans.Rmd
Untracked: code/GCTA_functions.R
Untracked: code/cluster/selscan.cluster.json
Untracked: code/cluster/sfs_selection.cluster.json
Untracked: code/config/200910_RAN.GPSM.config.yaml
Untracked: code/countgens_RAN.R
Untracked: code/snakemake_files/BOLT.snakefile
Untracked: code/snakemake_files/sfs_selection.snakefile
Untracked: ftpconfigs/
Untracked: functions.R
Untracked: output/200907_SIM.850K.bim
Untracked: output/200907_SIM/
Untracked: output/200910_RAN/fst/
Untracked: output/200910_RAN/greml/
Untracked: output/200910_RAN/selscan/
Untracked: test.Rmd
Untracked: test.html
Unstaged changes:
Modified: .gitignore
Modified: analysis/200910_RAN.envGWAS_results.Rmd
Modified: analysis/animal_locations.Rmd
Modified: analysis/phenotype_exploration.Rmd
Modified: code/annotation_functions.R
Modified: code/cluster/GCTA.cluster.json
Modified: code/config/200907_SIM.GPSM.config.yaml
Modified: code/config/200907_SIM.envGWAS.config.yaml
Modified: code/config/200910_RAN.config.yaml
Modified: code/config/200910_RAN_noLSF.config.yaml
Modified: code/snakemake_files/GCTA.snakefile
Modified: code/snakemake_files/selscan.snakefile
Deleted: data/README.md
Modified: output/200910_RAN/phenotypes/200910_RAN.age.txt
Modified: output/200910_RAN/phenotypes/200910_RAN.environment.txt
Modified: output/200910_RAN/phenotypes/200910_RAN.sex.txt
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/GPSM.Rmd) and HTML (docs/GPSM.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.
| File | Version | Author | Date | Message |
|---|---|---|---|---|
| Rmd | 50ddc20 | Troy Rowan | 2020-10-12 | Updated GPSM with GREML estimates and manhattan plots |
| Rmd | f01e8ba | Troy Rowan | 2020-09-29 | RMarkdown updates that haven’t been pushed by workflowr |
simmental = read_csv("output/200907_SIM/phenotypes/200907_SIM.info.csv")
redangus = read_csv("output/200910_RAN/phenotypes/200910_RAN.info.csv")
Raw Age (n= 46,454):
| Source | Variance | SE |
|---|---|---|
| V(G) | 5.244 | 0.128 |
| V(e) | 4.789 | 0.040 |
| V(p) | 10.03 | 0.118 |
| V(G)/Vp | 0.523 | 0.007 |
Square Root Transformed Age (n= 46,454):
| Source | Variance | SE |
|---|---|---|
| V(G) | 0.242 | 0.005 |
| V(e) | 0.151 | 0.001 |
| V(p) | 0.393 | 0.005 |
| V(G)/Vp | 0.616 | 0.006 |
Cube Root Transformed Age (n= 46,454):
| Source | Variance | SE |
|---|---|---|
| V(G) | 0.065 | 0.001 |
| V(e) | 0.037 | 0.000 |
| V(p) | 0.101 | 0.001 |
| V(G)/Vp | 0.637 | 0.006 |
Box-Cox Transformed Age (n= 46,454):
| Source | Variance | SE |
|---|---|---|
| V(G) | 0.115 | 0.002 |
| V(e) | 0.060 | 0.001 |
| V(p) | 0.175 | 0.002 |
| V(G)/Vp | 0.657 | 0.006 |
Log Transformed Age (n= 46,454):
| Source | Variance | SE |
|---|---|---|
| V(G) | 0.222 | 0.005 |
| V(e) | 0.115 | 0.001 |
| V(p) | 0.337 | 0.005 |
| V(G)/Vp | 0.657 | 0.006 |
These are REML estimates of individual’s breeding values and residuals from GCTA GREML analysis
plot_grid(
read_blp("output/200910_RAN/greml/200910_RAN.age.850K.indi.blp") %>%
left_join(redangus %>%
select(international_id, age)) %>%
ggplot(aes(sample = Residual))+
stat_qq()+
stat_qq_line(color = "red")+
ggtitle("Raw Age GPSM\nResiduals")+
theme_cowplot(),
read_blp("output/200910_RAN/greml/200910_RAN.age.850K.indi.blp") %>%
left_join(redangus %>%
select(international_id, age)) %>%
ggplot(aes(sample = BV))+
stat_qq()+
stat_qq_line(color = "red")+
ggtitle("\nBreeding Values")+
theme_cowplot())

plot_grid(
read_blp("output/200910_RAN/greml/200910_RAN.sqrt_age.850K.indi.blp") %>%
left_join(redangus %>%
select(international_id, age)) %>%
ggplot(aes(sample = Residual))+
stat_qq()+
stat_qq_line(color = "red")+
ggtitle("Square Root Transformed Age \nGPSM Residuals")+
theme_cowplot(),
read_blp("output/200910_RAN/greml/200910_RAN.sqrt_age.850K.indi.blp") %>%
left_join(redangus %>%
select(international_id, age)) %>%
ggplot(aes(sample = BV))+
stat_qq()+
stat_qq_line(color = "red")+
ggtitle("\nBreeding Values")+
theme_cowplot())

plot_grid(
read_blp("output/200910_RAN/greml/200910_RAN.cbrt_age.850K.indi.blp") %>%
left_join(redangus %>%
select(international_id, age)) %>%
ggplot(aes(sample = Residual))+
stat_qq()+
stat_qq_line(color = "red")+
ggtitle("Cube Root Transformed Age \nGPSM Residuals")+
theme_cowplot(),
read_blp("output/200910_RAN/greml/200910_RAN.cbrt_age.850K.indi.blp") %>%
left_join(redangus %>%
select(international_id, age)) %>%
ggplot(aes(sample = BV))+
stat_qq()+
stat_qq_line(color = "red")+
ggtitle("\nGPSM Breeding Values")+
theme_cowplot())

plot_grid(
read_blp("output/200910_RAN/greml/200910_RAN.bc_age.850K.indi.blp") %>%
left_join(redangus %>%
select(international_id, age)) %>%
ggplot(aes(sample = Residual))+
stat_qq()+
stat_qq_line(color = "red")+
ggtitle("Box-Cox Transformed Age \nGPSM Residuals")+
theme_cowplot(),
read_blp("output/200910_RAN/greml/200910_RAN.bc_age.850K.indi.blp") %>%
left_join(redangus %>%
select(international_id, age)) %>%
ggplot(aes(sample = BV))+
stat_qq()+
stat_qq_line(color = "red")+
ggtitle("\nGPSM Residuals")+
theme_cowplot())

plot_grid(read_blp("output/200910_RAN/greml/200910_RAN.log_age.850K.indi.blp") %>%
left_join(redangus %>%
select(international_id, age)) %>%
ggplot(aes(sample = Residual))+
stat_qq()+
stat_qq_line(color = "red")+
ggtitle("Log Transformed Age \nGPSM Residuals")+
theme_cowplot(),
read_blp("output/200910_RAN/greml/200910_RAN.log_age.850K.indi.blp") %>%
left_join(redangus %>%
select(international_id, age)) %>%
ggplot(aes(sample = BV))+
stat_qq()+
stat_qq_line(color = "red")+
ggtitle("\nGPSM Breeding Values")+
theme_cowplot())

The number of significant SNPs in each analysis at various significance level cutoffs for both p and q values
| p<1e-5 | p<1e7.55e-7 | q<0.1 | q<0.05 | |
|---|---|---|---|---|
| Raw | 315 | 214 | 509 | 398 |
| Sqrt | 453 | 333 | 729 | 559 |
| Cbrt | 471 | 357 | 817 | 596 |
| BoxCox | 540 | 390 | 907 | 754 |
| Log | 513 | 377 | 822 | 715 |
(Significance threshold - Bonferroni)
plot_grid(
ggmanhattan2(ran_gpsm_age,
prune = 0.1,
sig_threshold_p = 7.546167e-07),
ggmanhattan2(ran_gpsm_age,
prune = 0.1,
sig_threshold_p = 7.546167e-07)+
ylim(c(0,15)),
nrow = 2)

#Saving significant SNPs for highlighting in other plots:
raw_age_sigsnps =
ran_gpsm_age %>%
filter(p < 7.546167e-07) %>% .$SNP
Square root transformed age as phenotype (Significance threshold - Bonferroni)
Green points indicate novel SNPs in this transformed analysis (at Bonferroni significance levels) that weren’t identified in the GPSM analysis of raw age.
plot_grid(
ggmanhattan2(ran_gpsm_sqrtage,
prune = 0.1,
sig_threshold_p = 7.546167e-07,
sigsnps = filter(ran_gpsm_sqrtage,
p < 7.546e-7 & !SNP %in% raw_age_sigsnps) %>%
.$SNP),
ggmanhattan2(ran_gpsm_sqrtage,
prune = 0.1,
sig_threshold_p = 7.546167e-07,
sigsnps = filter(ran_gpsm_sqrtage,
p < 7.546e-7 & !SNP %in% raw_age_sigsnps) %>%
.$SNP)+
ylim(c(0,15)),
nrow = 2)

Cube Root Transformed Age Manahattan Plots (Significance threshold - Bonferroni)
Green points indicate novel SNPs in this transformed analysis (at Bonferroni significance levels) that weren’t identified in the GPSM analysis of raw age.
plot_grid(
ggmanhattan2(ran_gpsm_cbrtage,
prune = 0.1,
sig_threshold_p = 7.546167e-07,
sigsnps = filter(ran_gpsm_cbrtage,
p < 7.546e-7 & !SNP %in% raw_age_sigsnps) %>%
.$SNP),
ggmanhattan2(ran_gpsm_cbrtage,
prune = 0.1,
sig_threshold_p = 7.546167e-07,
sigsnps = filter(ran_gpsm_cbrtage,
p < 7.546e-7 & !SNP %in% raw_age_sigsnps) %>%
.$SNP)+
ylim(c(0,15)),
nrow = 2)

Box-Cox Transformed Age Manahattan Plots (Significance threshold - Bonferroni)
Green points indicate novel SNPs in this transformed analysis (at Bonferroni significance levels) that weren’t identified in the GPSM analysis of raw age.
plot_grid(
ggmanhattan2(ran_gpsm_bcage,
prune = 0.1,
sig_threshold_p = 7.546167e-07,
sigsnps = filter(ran_gpsm_bcage,
p < 7.546e-7 & !SNP %in% raw_age_sigsnps) %>%
.$SNP),
ggmanhattan2(ran_gpsm_bcage,
prune = 0.1,
sig_threshold_p = 7.546167e-07,
sigsnps = filter(ran_gpsm_bcage,
p < 7.546e-7 & !SNP %in% raw_age_sigsnps) %>%
.$SNP)+
ylim(c(0,15)),
nrow = 2)

Log Transformed Age Manahattan Plots (Significance threshold - Bonferroni)
Green points indicate novel SNPs in this transformed analysis (at Bonferroni significance levels) that weren’t identified in the GPSM analysis of raw age.
plot_grid(
ggmanhattan2(ran_gpsm_logage,
prune = 0.1,
sig_threshold_p = 7.546167e-07,
sigsnps = filter(ran_gpsm_logage,
p < 7.546e-7 & !SNP %in% raw_age_sigsnps) %>%
.$SNP),
ggmanhattan2(ran_gpsm_logage,
prune = 0.1,
sig_threshold_p = 7.546167e-07,
sigsnps = filter(ran_gpsm_logage,
p < 7.546e-7 & !SNP %in% raw_age_sigsnps) %>%
.$SNP)+
ylim(c(0,15)),
nrow = 2)

sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19041)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] viridis_0.5.1 viridisLite_0.3.0 cowplot_1.1.0 GALLO_0.99.0
[5] qvalue_2.20.0 pedigree_1.4 reshape_0.8.8 HaploSim_1.8.4
[9] Matrix_1.2-18 lubridate_1.7.9 forcats_0.5.0 stringr_1.4.0
[13] dplyr_1.0.2 readr_1.3.1 tidyr_1.1.2 tibble_3.0.3
[17] tidyverse_1.3.0 here_0.1 ggcorrplot_0.1.3 corrr_0.4.2
[21] factoextra_1.0.7 ggplot2_3.3.2 purrr_0.3.4 ggthemes_4.2.0
[25] maps_3.3.0 knitr_1.30 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] fs_1.5.0 doParallel_1.0.15 RColorBrewer_1.1-2
[4] httr_1.4.2 rprojroot_1.3-2 dynamicTreeCut_1.63-1
[7] tools_4.0.2 backports_1.1.10 R6_2.4.1
[10] DBI_1.1.0 colorspace_1.4-1 withr_2.3.0
[13] gridExtra_2.3 tidyselect_1.1.0 compiler_4.0.2
[16] git2r_0.27.1 cli_2.0.2 rvest_0.3.6
[19] xml2_1.3.2 labeling_0.3 scales_1.1.1
[22] digest_0.6.25 rmarkdown_2.3 pkgconfig_2.0.3
[25] htmltools_0.5.0 dbplyr_1.4.4 rlang_0.4.7
[28] GlobalOptions_0.1.2 readxl_1.3.1 rstudioapi_0.11
[31] farver_2.0.3 shape_1.4.5 generics_0.0.2
[34] jsonlite_1.7.1 magrittr_1.5 Rcpp_1.0.5
[37] munsell_0.5.0 fansi_0.4.1 lifecycle_0.2.0
[40] stringi_1.5.3 whisker_0.4 yaml_2.2.1
[43] plyr_1.8.6 grid_4.0.2 blob_1.2.1
[46] parallel_4.0.2 promises_1.1.1 ggrepel_0.8.2
[49] crayon_1.3.4 lattice_0.20-41 haven_2.3.1
[52] splines_4.0.2 circlize_0.4.10 hms_0.5.3
[55] pillar_1.4.6 reshape2_1.4.4 codetools_0.2-16
[58] reprex_0.3.0 glue_1.4.2 evaluate_0.14
[61] unbalhaar_2.0 data.table_1.13.0 modelr_0.1.8
[64] vctrs_0.3.4 httpuv_1.5.4 foreach_1.5.0
[67] cellranger_1.1.0 gtable_0.3.0 assertthat_0.2.1
[70] xfun_0.17 broom_0.7.0 later_1.1.0.1
[73] iterators_1.0.12 ellipsis_0.3.1