Last updated: 2021-06-08

Checks: 7 0

Knit directory: local_adaptation_sequence/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200709) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 77e94f5. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store
    Ignored:    data/Bos_taurus.ARS-UCD1.2.103.gtf.gz
    Ignored:    data/Bos_taurus.ARS-UCD1.2.QTL.gff.gz
    Ignored:    data/FAANG_peaks.bed.gz
    Ignored:    output/.DS_Store
    Ignored:    output/200910_RAN/.DS_Store
    Ignored:    output/200910_RAN/genes/
    Ignored:    output/200910_RAN/gwas/
    Ignored:    output/200910_RAN/seq_gwas/
    Ignored:    output/200910_RAN/sfs_selection/
    Ignored:    output/selscan_window/200907_SIM.all.nsl.out.100bins.norm.windows.txt
    Ignored:    output/selscan_window/200907_SIM.all.nsl.windows.txt
    Ignored:    output/selscan_window/200907_SIM.oldest_5000.nsl.out.100bins.norm.gz
    Ignored:    output/selscan_window/200907_SIM.purebred.nsl.out.100bins.norm.gz
    Ignored:    output/selscan_window/200907_SIM.purebred.nsl.out.100bins.norm.windows.txt
    Ignored:    output/selscan_window/200907_SIM.purebred.nsl.windows.txt
    Ignored:    output/selscan_window/200907_SIM.somesim.nsl.out.100bins.norm.gz
    Ignored:    output/selscan_window/200907_SIM.somesim.nsl.windows.txt
    Ignored:    output/selscan_window/200907_SIM.young_5000.nsl.out.100bins.norm.gz
    Ignored:    output/selscan_window/200910_RAN.all.nsl.out.100bins.norm.gz
    Ignored:    output/selscan_window/200910_RAN.all.nsl.out.100bins.norm.windows.txt
    Ignored:    output/selscan_window/200910_RAN.all.nsl.windows.txt
    Ignored:    output/selscan_window/200910_RAN.oldest_5000.nsl.out.100bins.norm.gz
    Ignored:    output/selscan_window/200910_RAN.young_5000.nsl.out.100bins.norm.gz

Untracked files:
    Untracked:  analysis/test.Rmd
    Untracked:  output/200907_SIM/
    Untracked:  output/200910_RAN/af_trajectories/
    Untracked:  output/200910_RAN/ld/
    Untracked:  output/200910_RAN/selscan/
    Untracked:  output/200910_RAN/seq_cojo/
    Untracked:  output/figures/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/envGWAS_850K.Rmd) and HTML (docs/envGWAS_850K.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 77e94f5 Troy Rowan 2021-06-08 Updated with 850K envGWAS analysis
Rmd 63f88e5 Troy Rowan 2021-05-13 Added envGWAS preliminary analysis

source("code/GCTA_functions.R")
source("code/annotation_functions.R")

Simmental

850K envGWAS

Manhattan plots with both p and q values

sim_manhattans = 
  unique(sim_envgwas$variable) %>%
    purrr::map(~plot_grid(ggmanhattan2(filter(sim_envgwas, variable == .x & p < 0.1), pcol = p, value = p) + ggtitle(.x),
                          ggmanhattan2(filter(sim_envgwas, variable == .x & p < 0.1), pcol = q, value = q),
                          nrow = 2))

envGWAS Runs

AridPrairie

sim_manhattans[[1]]

CornBelt

sim_manhattans[[2]]

Desert

sim_manhattans[[3]]

dewpoint

sim_manhattans[[4]]

elev

sim_manhattans[[5]]

FescueBelt

sim_manhattans[[6]]

Foothills

sim_manhattans[[7]]

ForestedMountains

sim_manhattans[[8]]

HighPlains

sim_manhattans[[9]]

latitude

sim_manhattans[[10]]

longitude

sim_manhattans[[11]]

maxtemp

sim_manhattans[[12]]

maxvap

sim_manhattans[[13]]

meantemp

sim_manhattans[[14]]

mintemp

sim_manhattans[[15]]

minvap

sim_manhattans[[16]]

precip

sim_manhattans[[17]]

Southeast

sim_manhattans[[18]]

UpperMidwest

sim_manhattans[[19]]

# cat('# # Simmental 850K envGWAS {.tabset}   \n')
# invisible(
#   sim_envgwas %>% 
#       dplyr::group_split(variable) %>% 
#       purrr::imap(.,~{
#         # create tabset for each group 
#         cat('### Tab',.y,'   \n')
#         cat('\n')
#         #p <- ggmanhattan2(filter(.x, p < 0.1), sigsnps = sim_multisig)
#         p <- filter(.x, p < 0.1) %>% ggplot(aes(CHR, BP))+geom_point()
#         cat(as.character(htmltools::tagList(p)))
#       })
# )

Number of significant SNPs in each analysis at 850K level

Number of SNPs in each analysis that reaches genome-wide significance at 1) Bonferroni 2) p < 1e-5 3) q < 0.1

sim_envgwas %>% 
  group_by(variable) %>% 
  summarize(bonfCount = sum(p < 6e-8),
            pCount = sum(p < 1e-5),
            qCount = sum(q < 0.1))
# A tibble: 19 x 4
   variable          bonfCount pCount qCount
   <chr>                 <int>  <int>  <int>
 1 AridPrairie               0     29     11
 2 CornBelt                  0     16      3
 3 Desert                   26    158    334
 4 dewpoint                  1      8      3
 5 elev                      1     14      3
 6 FescueBelt                0     11      0
 7 Foothills                 4     43     16
 8 ForestedMountains         1     13      3
 9 HighPlains                0     16      6
10 latitude                  1     10      1
11 longitude                 1     23      5
12 maxtemp                   0     10      2
13 maxvap                    0     11      0
14 meantemp                  1      8      2
15 mintemp                   1      9      2
16 minvap                    1     27      1
17 precip                    5     14      7
18 Southeast                 0     15      0
19 UpperMidwest              0     10      0

Number of SNPs that are shared across zones/variables

filter(sim_envgwas, p < 1e-5) %>%
  count(SNP, sort = TRUE)%>%
  filter(n>1) %>%
  kbl() %>%
  kable_styling()
SNP n
25:40171577:C:T 10
23:11653102:T:G 6
18:58490610:T:G 5
22:24449349:A:G 5
28:37890881:G:A 5
28:37891750:A:C 5
16:42569828:C:T 4
17:72089995:A:G 4
6:45760951:A:G 4
19:59908502:C:T 3
22:46620047:A:G 3
28:37892541:G:A 3
4:84863571:A:G 3
1:102180787:T:C 2
1:116110811:T:C 2
1:153515980:C:T 2
15:17921054:T:C 2
2:72751717:T:C 2
2:97342131:G:A 2
20:8095171:T:C 2
21:11109237:C:T 2
23:1747454:A:C 2
5:21848046:C:T 2
5:83441154:A:C 2

Red Angus

850K envGWAS

ran_envgwas =
  # list.files("output/200910_RAN/gwas") %>%
  #   map(
  #     ~read_gwas2(paste0("output/200910_RAN/gwas/", .x)) %>%
  #       mutate(variable = .x)) %>%
  #   reduce(bind_rows) %>%
  # mutate(variable = str_replace(variable, pattern = "200910_RAN.", ""),
  #        variable = str_replace(variable, pattern = ".850K.mlma.gz", ""),
  #        variable = str_replace(variable, pattern = "_noLSF", ""))

#write_csv(ran_envgwas, "output/200910_RAN/gwas/200910_RAN.AllGWAS.850K.mlma.gz")
  read_csv("output/200910_RAN/gwas/200910_RAN.AllGWAS.850K.mlma.gz",
           col_types = cols(SNP = col_character(), chrbp = col_character())) %>%
  filter(CHR < 30)

ran_multisig =
  filter(ran_envgwas, p < 1e-5) %>%
  count(SNP, sort = TRUE)%>%
  filter(n>1) %>%
  .$SNP

ran_manhattans = 
  unique(ran_envgwas$variable) %>%
    purrr::map(~ggmanhattan2(filter(ran_envgwas, variable == .x & p < 0.1),pcol = p, sigsnps = ran_multisig)+
                 ggtitle(.x))

envGWAS Runs

AridPrairie

ran_manhattans[[1]]

CornBelt

ran_manhattans[[2]]

Desert

ran_manhattans[[3]]

dewpoint

ran_manhattans[[4]]

elev

ran_manhattans[[5]]

FescueBelt

ran_manhattans[[6]]

Foothills

ran_manhattans[[7]]

ForestedMountains

ran_manhattans[[8]]

HighPlains

ran_manhattans[[9]]

latitude

ran_manhattans[[10]]

longitude

ran_manhattans[[11]]

maxtemp

ran_manhattans[[12]]

maxvap

ran_manhattans[[13]]

meantemp

ran_manhattans[[14]]

mintemp

ran_manhattans[[15]]

minvap

ran_manhattans[[16]]

precip

ran_manhattans[[17]]

Southeast

ran_manhattans[[18]]

UpperMidwest

ran_manhattans[[19]]

Annotating Genes

Skipping for now

Number of significant SNPs in each analysis at 850K level

Number of SNPs in each analysis that reaches genome-wide significance at 1) Bonferroni 2) p < 1e-5 3) q < 0.1

sim_envgwas %>% 
  group_by(variable) %>% 
  summarize(bonfCount = sum(p < 6e-8),
            pCount = sum(p < 1e-5),
            qCount = sum(q < 0.1))
# A tibble: 19 x 4
   variable          bonfCount pCount qCount
   <chr>                 <int>  <int>  <int>
 1 AridPrairie               0     29     11
 2 CornBelt                  0     16      3
 3 Desert                   26    158    334
 4 dewpoint                  1      8      3
 5 elev                      1     14      3
 6 FescueBelt                0     11      0
 7 Foothills                 4     43     16
 8 ForestedMountains         1     13      3
 9 HighPlains                0     16      6
10 latitude                  1     10      1
11 longitude                 1     23      5
12 maxtemp                   0     10      2
13 maxvap                    0     11      0
14 meantemp                  1      8      2
15 mintemp                   1      9      2
16 minvap                    1     27      1
17 precip                    5     14      7
18 Southeast                 0     15      0
19 UpperMidwest              0     10      0

Number of SNPs that are shared across zones/variables

At p < 1e-5 threshold

filter(ran_envgwas, p < 1e-5) %>%
  count(SNP, sort = TRUE)%>%
  filter(n>1) %>%
  kbl() %>%
  kable_styling()
SNP n
5:56294803:C:T 8
6:89632622:C:T 8
11:66022330:T:C 5
16:31189754:C:T 5
26:22147551:A:G 5
5:55940985:C:A 4
5:99932542:A:C 4
15:63936462:G:A 3
23:1760296:G:A 3
23:1762985:C:T 3
23:1764305:C:T 3
23:1765645:C:T 3
23:1768070:C:T 3
23:1773893:A:G 3
23:1780836:T:C 3
4:15143313:T:C 3
5:29337648:C:T 3
5:99970391:T:C 3
13:11805638:G:A 2
15:63923159:C:T 2
15:63930524:T:C 2
18:1421130:A:G 2
18:55917363:G:A 2
18:55918169:C:G 2
18:55923037:C:T 2
2:76462949:C:A 2
23:1741368:T:C 2
23:1742961:G:A 2
23:1744435:G:A 2
23:1745568:C:T 2
23:1747454:A:C 2
23:1750999:G:T 2
23:1753411:C:A 2
23:1755721:T:C 2
29:44876613:A:G 2
4:114194176:G:A 2
4:117086624:G:A 2
5:34082134:C:T 2
5:83684035:C:T 2
6:83637243:A:G 2

sessionInfo()
R version 4.0.4 (2021-02-15)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] viridis_0.5.1     viridisLite_0.3.0 kableExtra_1.3.4  UpSetR_1.4.0     
 [5] DT_0.17           gprofiler2_0.2.0  cowplot_1.1.1     GALLO_1.1        
 [9] qvalue_2.22.0     pedigree_1.4      reshape_0.8.8     HaploSim_1.8.4   
[13] Matrix_1.3-2      lubridate_1.7.10  forcats_0.5.1     stringr_1.4.0    
[17] dplyr_1.0.5       readr_1.4.0       tidyr_1.1.3       tibble_3.1.0     
[21] tidyverse_1.3.0   here_1.0.1        ggcorrplot_0.1.3  corrr_0.4.3      
[25] factoextra_1.0.7  ggplot2_3.3.3     purrr_0.3.4       ggthemes_4.2.4   
[29] maps_3.3.0        knitr_1.31        workflowr_1.6.2  

loaded via a namespace (and not attached):
  [1] colorspace_2.0-0            ellipsis_0.3.1             
  [3] rprojroot_2.0.2             circlize_0.4.12            
  [5] XVector_0.30.0              GenomicRanges_1.42.0       
  [7] GlobalOptions_0.1.2         fs_1.5.0                   
  [9] rstudioapi_0.13             farver_2.1.0               
 [11] ggrepel_0.9.1               fansi_0.4.2                
 [13] xml2_1.3.2                  codetools_0.2-18           
 [15] splines_4.0.4               doParallel_1.0.16          
 [17] jsonlite_1.7.2              Rsamtools_2.6.0            
 [19] broom_0.7.5                 dbplyr_2.1.0               
 [21] compiler_4.0.4              httr_1.4.2                 
 [23] backports_1.2.1             assertthat_0.2.1           
 [25] lazyeval_0.2.2              cli_2.3.1                  
 [27] later_1.1.0.1               htmltools_0.5.1.1          
 [29] tools_4.0.4                 GenomeInfoDbData_1.2.4     
 [31] gtable_0.3.0                glue_1.4.2                 
 [33] reshape2_1.4.4              Rcpp_1.0.6                 
 [35] Biobase_2.50.0              cellranger_1.1.0           
 [37] Biostrings_2.58.0           vctrs_0.3.6                
 [39] svglite_2.0.0               rtracklayer_1.50.0         
 [41] iterators_1.0.13            xfun_0.22                  
 [43] rvest_1.0.0                 lifecycle_1.0.0            
 [45] XML_3.99-0.6                zlibbioc_1.36.0            
 [47] scales_1.1.1                MatrixGenerics_1.2.1       
 [49] hms_1.0.0                   promises_1.2.0.1           
 [51] SummarizedExperiment_1.20.0 parallel_4.0.4             
 [53] RColorBrewer_1.1-2          yaml_2.2.1                 
 [55] gridExtra_2.3               stringi_1.5.3              
 [57] highr_0.8                   unbalhaar_2.0              
 [59] S4Vectors_0.28.1            foreach_1.5.1              
 [61] BiocGenerics_0.36.1         BiocParallel_1.24.1        
 [63] shape_1.4.5                 GenomeInfoDb_1.26.7        
 [65] matrixStats_0.58.0          rlang_0.4.10               
 [67] pkgconfig_2.0.3             systemfonts_1.0.1          
 [69] bitops_1.0-6                evaluate_0.14              
 [71] lattice_0.20-41             labeling_0.4.2             
 [73] GenomicAlignments_1.26.0    htmlwidgets_1.5.3          
 [75] tidyselect_1.1.0            plyr_1.8.6                 
 [77] magrittr_2.0.1              R6_2.5.0                   
 [79] IRanges_2.24.1              generics_0.1.0             
 [81] DelayedArray_0.16.3         DBI_1.1.1                  
 [83] pillar_1.5.1                haven_2.3.1                
 [85] whisker_0.4                 withr_2.4.1                
 [87] RCurl_1.98-1.3              modelr_0.1.8               
 [89] crayon_1.4.1                utf8_1.2.1                 
 [91] plotly_4.9.3                rmarkdown_2.7              
 [93] grid_4.0.4                  readxl_1.3.1               
 [95] data.table_1.14.0           git2r_0.28.0               
 [97] reprex_1.0.0                digest_0.6.27              
 [99] webshot_0.5.2               httpuv_1.5.5               
[101] stats4_4.0.4                munsell_0.5.0