Last updated: 2022-04-11

Checks: 7 0

Knit directory: Code/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211230) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version e47dde2. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    Flexibility Comparisons.nb.html
    Ignored:    Main.nb.html
    Ignored:    PGLS.FullData.nb.html
    Ignored:    PGLSforeachMeasFeature.nb.html
    Ignored:    PGLSwithPCA_Dims.nb.html
    Ignored:    PreppedVertMeas.nb.html
    Ignored:    ProcessCymatogasterFiles.nb.html
    Ignored:    ProcessFCSVfiles.nb.html
    Ignored:    TestingHabitatwithFriedmanData.nb.html
    Ignored:    Trilok_tree.nb.html
    Ignored:    VertLM.nb.html
    Ignored:    VertMeasLDA_Attempt.nb.html
    Ignored:    VertPGLS.nb.html
    Ignored:    VertPairs.nb.html
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/10-VertLM.nb.html
    Ignored:    analysis/20-plot_phylogeny.nb.html
    Ignored:    analysis/21-plot_fits_and_summary.nb.html
    Ignored:    analysis/CheckSpeciesMatch.nb.html
    Ignored:    caper_test.nb.html
    Ignored:    data/.DS_Store
    Ignored:    ggtree_attempt.nb.html
    Ignored:    plot_example_data.nb.html
    Ignored:    plot_fits_and_summary.nb.html
    Ignored:    plot_phylogeny.nb.html
    Ignored:    renv/library/
    Ignored:    renv/staging/
    Ignored:    summarize_vert_meas.nb.html
    Ignored:    test_phylogeny.nb.html
    Ignored:    test_vertebraspace.nb.html
    Ignored:    vert_evol.Rproj

Untracked files:
    Untracked:  Main.html
    Untracked:  ProcessFCSVfiles.Rmd
    Untracked:  VertPGLS.html
    Untracked:  gg_saver.R
    Untracked:  output/BodyDistribution.pdf
    Untracked:  output/MasterVert_Measurements.csv
    Untracked:  output/mean_d_alphaPos_CBL.pdf
    Untracked:  output/pair_plot.pdf
    Untracked:  output/plot_example_data_figure.pdf
    Untracked:  output/stats_table.rtf
    Untracked:  plot_fits_and_summary.Rmd
    Untracked:  summarize_vert_meas.html
    Untracked:  testtree.csv
    Untracked:  vert_tree.csv

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/22-VertPairs.Rmd) and HTML (docs/22-VertPairs.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 23908bd Eric Tytell 2021-12-30 Test site build again
Rmd edeae3c Eric Tytell 2021-12-30 Rename notebooks to indicate order

library(tidyverse)
── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
✓ ggplot2 3.3.5     ✓ purrr   0.3.4
✓ tibble  3.1.4     ✓ dplyr   1.0.7
✓ tidyr   1.1.3     ✓ stringr 1.4.0
✓ readr   2.0.1     ✓ forcats 0.5.1
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
x dplyr::filter() masks stats::filter()
x dplyr::lag()    masks stats::lag()
library(patchwork)
library(ggtree)
ggtree v3.0.2  For help: https://yulab-smu.top/treedata-book/

If you use ggtree in published research, please cite the most appropriate paper(s):

1. Guangchuang Yu. Using ggtree to visualize data on tree-like structures. Current Protocols in Bioinformatics, 2020, 69:e96. doi:10.1002/cpbi.96
2. Guangchuang Yu, Tommy Tsan-Yuk Lam, Huachen Zhu, Yi Guan. Two methods for mapping and visualizing associated data on phylogeny using ggtree. Molecular Biology and Evolution 2018, 35(12):3041-3043. doi:10.1093/molbev/msy194
3. Guangchuang Yu, David Smith, Huachen Zhu, Yi Guan, Tommy Tsan-Yuk Lam. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution 2017, 8(1):28-36. doi:10.1111/2041-210X.12628

Attaching package: 'ggtree'
The following object is masked from 'package:tidyr':

    expand
library(here)
here() starts at /Users/etytel01/Documents/Vertebrae/Code
verttree <- readRDS(here('output/vert_tree.rds'))
verttree_data <- read_csv(here('output/vertdata_summary_lm_species.csv'))
Rows: 77 Columns: 99
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr  (7): Species, Habitat, Water_Type, MatchSpecies, MatchGenus, FullName, ...
dbl (92): fineness, CBL_med, CBL_max, CBL_mn, d_med, d_max, d_mn, alphaAnt_m...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
verttree_data <-
  as_tibble(verttree) %>%
  left_join(verttree_data %>%
              rename(label = FullName))
Joining, by = "label"

Pairs of species

Look for pairs of species that have the same parent node but differ in habitats.

pairs <-
  verttree_data %>%
  filter(!is.na(Habitat)) %>%
  group_by(parent) %>%
  arrange(Habitat) %>%
  mutate(nsib = n(),
         diffhab = any(Habitat != first(Habitat)),
         compare = str_c(str_sub(Habitat, start=1, end=1), collapse="-")) %>%
  ungroup() %>%
  filter(nsib == 2) %>% # & branch.length <= 100) %>%
  select(-nsib) %>%
  arrange(parent, Habitat)

Then look at a few specific variables and see whether they increase or decrease across the habitats.

pairslong <-
  pairs %>%
  select(Habitat, parent, branch.length, d_mn, alphaPos_mn, diffhab, compare) %>%
  pivot_longer(c(d_mn, alphaPos_mn), 
               names_to="var", values_to="value") %>%
  group_by(var, parent) %>%
  arrange(Habitat) %>%
  mutate(change = case_when(abs(lead(value) - value)/value < 0.05   ~   'same',
                            lead(value) > value   ~   'increase',
                            lead(value) < value   ~   'decrease')) %>%
  fill(change) %>%
  mutate(change = factor(change),
         parent = factor(parent)) %>%
  ungroup() %>%
  arrange(var, parent, Habitat)

pairslong
# A tibble: 92 × 8
   Habitat  parent branch.length diffhab compare var         value change  
   <chr>    <fct>          <dbl> <lgl>   <chr>   <chr>       <dbl> <fct>   
 1 pelagic  84              54.2 FALSE   p-p     alphaPos_mn  91.5 decrease
 2 pelagic  84              54.2 FALSE   p-p     alphaPos_mn  85.5 decrease
 3 benthic  90              47.5 TRUE    b-d     alphaPos_mn  67.8 decrease
 4 demersal 90              47.5 TRUE    b-d     alphaPos_mn  52.2 decrease
 5 demersal 94              82.5 FALSE   d-d     alphaPos_mn  67.2 increase
 6 demersal 94              82.5 FALSE   d-d     alphaPos_mn  72.8 increase
 7 demersal 96             126.  FALSE   d-d     alphaPos_mn  73.8 increase
 8 demersal 96             126.  FALSE   d-d     alphaPos_mn  88.1 increase
 9 demersal 99             104.  FALSE   d-d     alphaPos_mn  68.2 increase
10 demersal 99             104.  FALSE   d-d     alphaPos_mn 112.  increase
# … with 82 more rows
pairslong %>%
  filter(var == 'd_mn' & diffhab) %>%
  ggplot(aes(x = Habitat, y = value, group=fct_cross(var, parent), linetype = change, color=diffhab)) +
  geom_line()

Construct a transformation for point size that is the inverse of branch lengths, so that long branches would have small points.

branch_len_trans <- function() 
  scales::trans_new('branch_len',
                    function(x) 400/x,
                    function(x) 400/x,
                    domain = c(0, Inf))

Plot the pairs

paircolors <- c('#1b9e77','#d95f02','#7570b3')
pairslong %>%
  filter(diffhab, var == "d_mn")
# A tibble: 26 × 8
   Habitat  parent branch.length diffhab compare var      value change  
   <chr>    <fct>          <dbl> <lgl>   <chr>   <chr>    <dbl> <fct>   
 1 benthic  90              47.5 TRUE    b-d     d_mn  0.00117  same    
 2 demersal 90              47.5 TRUE    b-d     d_mn  0.0012   same    
 3 demersal 101            129.  TRUE    d-p     d_mn  0.00473  decrease
 4 pelagic  101            129.  TRUE    d-p     d_mn  0.00292  decrease
 5 benthic  105             41.5 TRUE    b-d     d_mn  0.00187  same    
 6 demersal 105             41.5 TRUE    b-d     d_mn  0.00182  same    
 7 benthic  127             59.2 TRUE    b-p     d_mn  0.00278  decrease
 8 pelagic  127             59.2 TRUE    b-p     d_mn  0.000317 decrease
 9 demersal 128             29.1 TRUE    d-p     d_mn  0.00218  decrease
10 pelagic  128             29.1 TRUE    d-p     d_mn  0.00075  decrease
# … with 16 more rows
pairplot <- function(df, varname) {
  df %>%
    filter(diffhab) %>%
    filter(str_detect(var, varname)) %>%
    ggplot(aes(x = Habitat, y = value, group=fct_cross(var, parent),
               color=change, # shape = branch.length,
               linetype=change)) +
    geom_line(size = 1) + #, position = position_dodge(width = 0.2)) + 
    geom_point() + #alpha = 0.7) + # , position = position_dodge(width = 0.2)) +
    scale_size(trans = "branch_len", range = c(1, 12)) +
    scale_shape_binned() +
    scale_color_manual(values = paircolors) +
    labs(y = varname) +
    theme_bw() 
}

#p1 <- pairplot(pairs, "d_max")
p2 <- pairplot(pairslong, "alphaPos") +
  labs(y = 'Mean posterior\ncone angle (deg)') +
  theme(aspect.ratio = 0.7)
p1 <- pairplot(pairslong, "d_mn") +
  labs(y = 'Mean foramen\ndiameter (BL)') +
  theme(aspect.ratio = 0.7)
p1 / p2 + plot_layout(guides = 'collect') & theme(legend.position = "bottom")

pairslong %>%
  filter(var == "d_mn") %>%
  filter(diffhab) %>%
  group_by(change, parent) %>%
  summarize(change = first(change)) %>%
  summarize(n = n(), pct = n()/13 * 100)
`summarise()` has grouped output by 'change'. You can override using the `.groups` argument.
# A tibble: 3 × 3
  change       n   pct
  <fct>    <int> <dbl>
1 decrease     8  61.5
2 increase     2  15.4
3 same         3  23.1
pairslong %>%
  filter(var == "d_mn") %>%
  filter(!diffhab) %>%
  group_by(change, parent) %>%
  summarize(change = first(change)) %>%
  summarize(n = n(), pct = n()/13 * 100)
`summarise()` has grouped output by 'change'. You can override using the `.groups` argument.
# A tibble: 2 × 3
  change       n   pct
  <fct>    <int> <dbl>
1 decrease     6  46.2
2 increase     4  30.8
pairslong %>%
  filter(var == "alphaPos_mn") %>%
  filter(diffhab) %>%
  group_by(change, parent) %>%
  summarize(change = first(change)) %>%
  summarize(n = n(), pct = n()/13 * 100)
`summarise()` has grouped output by 'change'. You can override using the `.groups` argument.
# A tibble: 3 × 3
  change       n   pct
  <fct>    <int> <dbl>
1 decrease     6 46.2 
2 increase     6 46.2 
3 same         1  7.69
pairslong %>%
  filter(var == "alphaPos_mn") %>%
  filter(!diffhab) %>%
  group_by(change, parent) %>%
  summarize(change = first(change)) %>%
  summarize(n = n(), pct = n()/13 * 100)
`summarise()` has grouped output by 'change'. You can override using the `.groups` argument.
# A tibble: 3 × 3
  change       n   pct
  <fct>    <int> <dbl>
1 decrease     4  30.8
2 increase     4  30.8
3 same         2  15.4
ggsave(here('output/pair_plot.pdf'), width=3, units="in")
Saving 3 x 5 in image
write_csv(pairs, here('output/vertdata_pairs.csv'))

sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices datasets  utils     methods   base     

other attached packages:
 [1] here_1.0.1      ggtree_3.0.2    patchwork_1.1.1 forcats_0.5.1  
 [5] stringr_1.4.0   dplyr_1.0.7     purrr_0.3.4     readr_2.0.1    
 [9] tidyr_1.1.3     tibble_3.1.4    ggplot2_3.3.5   tidyverse_1.3.1

loaded via a namespace (and not attached):
 [1] nlme_3.1-153        fs_1.5.0            lubridate_1.7.10   
 [4] bit64_4.0.5         httr_1.4.2          rprojroot_2.0.2    
 [7] tools_4.1.2         backports_1.2.1     utf8_1.2.2         
[10] R6_2.5.1            DBI_1.1.1           lazyeval_0.2.2     
[13] colorspace_2.0-2    withr_2.4.2         tidyselect_1.1.1   
[16] bit_4.0.4           compiler_4.1.2      git2r_0.29.0       
[19] cli_3.0.1           rvest_1.0.1         xml2_1.3.2         
[22] labeling_0.4.2      scales_1.1.1        digest_0.6.27      
[25] yulab.utils_0.0.2   rmarkdown_2.10      pkgconfig_2.0.3    
[28] htmltools_0.5.2     highr_0.9           dbplyr_2.1.1       
[31] fastmap_1.1.0       rlang_0.4.11        readxl_1.3.1       
[34] rstudioapi_0.13     farver_2.1.0        gridGraphics_0.5-1 
[37] generics_0.1.0      jsonlite_1.7.2      vroom_1.5.4        
[40] magrittr_2.0.1      ggplotify_0.1.0     Rcpp_1.0.7         
[43] munsell_0.5.0       fansi_0.5.0         ape_5.5            
[46] lifecycle_1.0.0     stringi_1.7.4       whisker_0.4        
[49] yaml_2.2.1          grid_4.1.2          parallel_4.1.2     
[52] promises_1.2.0.1    crayon_1.4.1        lattice_0.20-45    
[55] haven_2.4.3         hms_1.1.0           knitr_1.34         
[58] pillar_1.6.2        reprex_2.0.1        glue_1.4.2         
[61] evaluate_0.14       renv_0.14.0         BiocManager_1.30.16
[64] modelr_0.1.8        vctrs_0.3.8         treeio_1.16.1      
[67] tzdb_0.1.2          httpuv_1.6.4        cellranger_1.1.0   
[70] gtable_0.3.0        assertthat_0.2.1    xfun_0.25          
[73] broom_0.7.9         tidytree_0.3.5      later_1.3.0        
[76] aplot_0.1.0         rvcheck_0.1.8       workflowr_1.7.0    
[79] ellipsis_0.3.2