Last updated: 2018-08-29

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20180714)

    The command set.seed(20180714) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 237072b

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    docs/.DS_Store
        Ignored:    docs/figure/.DS_Store
    
    Untracked files:
        Untracked:  code/init_fn3.R
        Untracked:  data/greedy19.rds
        Untracked:  data/init_fn3/
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 237072b Jason Willwerscheid 2018-08-29 wflow_publish(“analysis/init_fn3.Rmd”)


Introduction

Here I return to the question of which initialization function is best, and in which cases. I run some simple experiments on simulated datasets of various dimensions and with or without missing data.

Results

I simulate data from both a null model and a rank-one model with \(p \in \{1000, 10000\}\) and with \(n\) ranging from 10 to 1000. I either retain all of the data or I delete 20% of entries. I initialize using "udv_si", "udv_si_svd", and, when there is no missing data, "udv_svd".

I pre-run the code below and load the results from file.

all_res <- readRDS("./data/init_fn3/all_res.rds")
 
plot_results <- function(res, n, main, colors) {
  colors = colors[c("udv_si_svd", "udv_si", "udv_svd")]
  plot(log10(n), log10(res[["udv_si_svd"]]), type='l', col=colors[1],
       xlab = "log10(n)", ylab = "time elapsed (log10 s)",
       ylim = log10(c(min(unlist(res)), max(unlist(res)))),
       main = main)
  lines(log10(n), log10(res[["udv_si"]]), col=colors[2])
  if (length(res) == 3) {
    lines(log10(n), log10(res[["udv_svd"]]), col=colors[3])
  }
  
  legend.txt <- c("udv_si_svd", "udv_si", "udv_svd")
  legend("bottomright", legend.txt[1:length(res)], lty=1,
         col=colors[1:length(res)])
}

ns <- c(10, 25, 50, 100, 250, 500, 1000)
colors = RColorBrewer::brewer.pal(3, "Dark2")[1:3]
names(colors) = c("udv_svd", "udv_si", "udv_si_svd")

plot_results(all_res$null_noNA_p1000, ns, 
             "Null data (no missing), p = 1000", colors)

plot_results(all_res$null_noNA_p10000, ns, 
             "Null data (no missing), p = 10000", colors)

plot_results(all_res$r1_noNA_p1000, ns, 
             "Rank-one data (no missing), p = 1000", colors)

plot_results(all_res$r1_noNA_p10000, ns, 
             "Rank-one data (no missing), p = 10000", colors)

plot_results(all_res$null_missing_p1000, ns, 
             "Null data (with missing), p = 1000", colors)

plot_results(all_res$null_missing_p10000, ns, 
             "Null data (with missing), p = 10000", colors)

plot_results(all_res$r1_missing_p1000, ns, 
             "Rank-one data (with missing), p = 1000", colors)

plot_results(all_res$r1_missing_p10000, ns, 
             "Rank-one data (with missing), p = 10000", colors)

Conclusions

The current default init_fn = "udv_si" is sensible. In cases with missing data, "udv_si" almost always beats "udv_si_svd"; the only exceptions are for small \(n\), but in such cases initialization is very fast anyway.

When there is no missing data, then "udv_svd" is the fastest method for small \(n\), but "udv_si" is again the fastest method when \(n\) becomes large. (Interestingly, the relative speeds do not seem to depend on the larger dimension \(p\).)

It would be possible to programmatically set init_fn based on \(n\) (or more precisely, based on the smaller of \(n\) and \(p\)), but I don’t think it’s worth the trouble, since "udv_si_svd" seems to consistently be the fastest (or nearly fastest) method when the speed of initialization actually becomes an issue.

Code

devtools::load_all("/Users/willwerscheid/GitHub/flashr")

sim_mat <- function(n, p, type, missing) {
  if (type == 1) {
    out <- matrix(rnorm(n * p), nrow=n, ncol=p)
  } else if (type == 2) {
    out <- (outer(rep(1, n), rep(1, p))
            + matrix(rnorm(n * p), nrow=n, ncol=p))
  }
  if (missing) {
    out[rbinom(n * p, 1, 0.2) == 1] <- NA
  }
  return(out)
}

do_experiment <- function(nreps, ns, p, type, missing, verbose=TRUE) {
  res <- list()
  if (missing) {
    init_fns <- c("udv_si", "udv_si_svd")
  } else {
    init_fns <- c("udv_svd", "udv_si", "udv_si_svd")
  }

  for (init_fn in init_fns) {
    res[[init_fn]] <- rep(NA, nrow=length(ns))
  }

  for (i in 1:length(ns)) {
    if (verbose) {
      message("n = ", ns[i])
    }

    data <- list()
    for (rep in 1:nreps) {
      data[[rep]] <- sim_mat(ns[i], p, type, missing)
    }

    for (init_fn in init_fns) {
      t <- system.time({
        for (rep in 1:nreps) {
          fl <- flash_add_factors_from_data(data[[rep]],
                                            K=5,
                                            init_fn=init_fn,
                                            backfit=FALSE,
                                            verbose=FALSE)
        }
      })
      res[[init_fn]][i] <- t["elapsed"]
    }

  }

  return(res)
}

set.seed(666)
all_res <- list()

nreps <- 5
ns <- c(10, 25, 50, 100, 250, 500, 1000)
p <- 1000

all_res$null_noNA_p1000 <- do_experiment(nreps, ns, p, type=1,
                                         missing=FALSE)
all_res$r1_noNA_p1000 <- do_experiment(nreps, ns, p, type=2,
                                       missing=FALSE)
all_res$null_missing_p1000 <- do_experiment(nreps, ns, p, type=1,
                                            missing=TRUE)
all_res$r1_missing_p1000 <- do_experiment(nreps, ns, p, type=2,
                                          missing=TRUE)

nreps <- 1
ns <- c(10, 25, 50, 100, 250, 500, 1000)
p <- 10000

all_res$null_noNA_p10000 <- do_experiment(nreps, ns, p, type=1,
                                          missing=FALSE)
all_res$r1_noNA_p10000 <- do_experiment(nreps, ns, p, type=2,
                                        missing=FALSE)
all_res$null_missing_p10000 <- do_experiment(nreps, ns, p, type=1,
                                             missing=TRUE)
all_res$r1_missing_p10000 <- do_experiment(nreps, ns, p, type=2,
                                           missing=TRUE)

saveRDS(all_res, "./data/init_fn3/all_res.rds")

Session information

sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] workflowr_1.0.1    Rcpp_0.12.17       digest_0.6.15     
 [4] rprojroot_1.3-2    R.methodsS3_1.7.1  backports_1.1.2   
 [7] git2r_0.21.0       magrittr_1.5       evaluate_0.10.1   
[10] stringi_1.1.6      whisker_0.3-2      R.oo_1.21.0       
[13] R.utils_2.6.0      rmarkdown_1.8      RColorBrewer_1.1-2
[16] tools_3.4.3        stringr_1.3.0      yaml_2.1.17       
[19] compiler_3.4.3     htmltools_0.3.6    knitr_1.20        

This reproducible R Markdown analysis was created with workflowr 1.0.1