Last updated: 2018-07-20

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20180714)

    The command set.seed(20180714) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 032edd6

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    docs/.DS_Store
        Ignored:    docs/figure/.DS_Store
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 032edd6 Jason Willwerscheid 2018-07-20 wflow_publish(c(“analysis/index.Rmd”, “analysis/flash_em.Rmd”,
    html 1822e95 Jason Willwerscheid 2018-07-20 Build site.
    Rmd c23f41c Jason Willwerscheid 2018-07-20 wflow_publish(“analysis/alt_alg.Rmd”)
    html 2cbe7dd Jason Willwerscheid 2018-07-19 Build site.
    Rmd bc2681e Jason Willwerscheid 2018-07-19 wflow_publish(“analysis/alt_alg.Rmd”)


Intro

Here I implement the algorithm described in a previous note and compare results with FLASH.

Code

Click “Code” to view the implementation.

# INITIALIZATION FUNCTIONS ------------------------------------------

fl_to_altfl <- function(data, fl, k) {
  altfl <- list()
  altfl$tau <- fl$tau
  altfl$Rk <- flashr:::flash_get_Rk(data, fl, k)
  altfl$R2k <- flashr:::flash_get_R2k(data, fl, k)
  
  altfl$al <- fl$gl[[k]]$a
  altfl$pi0l <- fl$gl[[k]]$pi0
  altfl$af <- fl$gf[[k]]$a
  altfl$pi0f <- fl$gf[[k]]$pi0

  s2 = 1/(fl$EF2[, k] %*% t(fl$tau))
  s = sqrt(s2)
  Rk = flashr:::flash_get_Rk(data, fl, k)
  x = fl$EF[, k] %*% t(Rk * fl$tau) * s2
  w = 1 - fl$gl[[k]]$pi0
  a = fl$gl[[k]]$a
  
  altfl$wl <- ebnm:::wpost_normal(x, s, w, a)
  altfl$mul <- ebnm:::pmean_cond_normal(x, s, a)
  altfl$s2l <- ebnm:::pvar_cond_normal(s, a)
  
  s2 = 1/(fl$EL2[, k] %*% fl$tau)
  s = sqrt(s2)
  Rk = flashr:::flash_get_Rk(data, fl, k)
  x = fl$EL[, k] %*% (Rk * fl$tau) * s2
  w = 1 - fl$gf[[k]]$pi0
  a = fl$gf[[k]]$a
  
  altfl$wf <- ebnm:::wpost_normal(x, s, w, a)
  altfl$muf <- ebnm:::pmean_cond_normal(x, s, a)
  altfl$s2f <- ebnm:::pvar_cond_normal(s, a)
  
  altfl$KL <- sum(unlist(fl$KL_l)[-k] + unlist(fl$KL_f)[-k])
  
  return(altfl)
}

altfl_to_fl <- function(altfl, fl, k) {
  fl$EL[, k] <- compute_EX(altfl$wl, altfl$mul)
  fl$EL2[, k] <- compute_EX2(altfl$wl, altfl$mul, altfl$s2l)
  fl$EF[, k] <- compute_EX(altfl$wf, altfl$muf)
  fl$EF2[, k] <- compute_EX2(altfl$wf, altfl$muf, altfl$s2f)
  
  fl$gl[[k]] <- list(pi0 = altfl$pi0l, a = altfl$al)
  fl$gf[[k]] <- list(pi0 = altfl$pi0f, a = altfl$af)
  fl$ebnm_fn_l <- fl$ebnm_fn_f <- "alt"
  fl$ebnm_param_l <- fl$ebnm_param_f <- list()
  
  fl$tau <- altfl$tau
  
  return(fl)
}

# OBJECTIVE FUNCTION ------------------------------------------------

compute_obj <- function(altfl) {
  with(altfl, {
    EL <- compute_EX(wl, mul)
    EL2 <- compute_EX2(wl, mul, s2l)
    EF <- compute_EX(wf, muf)
    EF2 <- compute_EX2(wf, muf, s2f)

    obj <- rep(0, 4)
    
    obj[1] <- sum(0.5 * log(tau / (2 * pi)))
    obj[2] <- sum(-0.5 * (tau * (R2k - 2 * Rk * outer(EL, EF) + outer(EL2, EF2))))
    
    obj[3] <- compute_KL(wl, mul, s2l, pi0l, al)
    obj[4] <- compute_KL(wf, muf, s2f, pi0f, af)
  
    return(sum(obj) + KL)
  })
}

compute_KL <- function(w, mu, s2, pi0, a) {
  obj <- rep(0, 3)
  
  tmp <- (1 - w) * (log(pi0) - log(1 - w)) 
  obj[1] <- sum(tmp[!is.nan(tmp)])
  tmp <- w * (log(1 - pi0) - log(w))
  obj[2] <- sum(tmp[!is.nan(tmp)])
  obj[3] <- sum(0.5 * w * (log(a) + log(s2) + 1 - a * (mu^2 + s2)))
  
  return(sum(obj))
}

compute_EX <- function(w, mu) {
  return(as.vector(w * mu))
}

compute_EX2 <- function(w, mu, sigma2) {
  return(as.vector(w * (mu^2 + sigma2)))
}

# UPDATE FUNCTIONS --------------------------------------------------

update_a <- function(w, EX2) {
  return(sum(w) / sum(EX2))
}

update_pi0 <- function(w) {
  return(sum(1 - w) / length(w))
}

update_mul <- function(a, tau, Rk, EF, EF2) {
  n <- nrow(tau)
  p <- ncol(tau)
  numer <- rowSums(tau * Rk * matrix(EF, nrow=n, ncol=p, byrow=TRUE))
  denom <- a + rowSums(tau * matrix(EF2, nrow=n, ncol=p, byrow=TRUE))
  return(numer / denom)
}

update_muf <- function(a, tau, Rk, EL, EL2) {
  n <- nrow(tau)
  p <- ncol(tau)
  numer <- colSums(tau * Rk * matrix(EL, nrow=n, ncol=p, byrow=FALSE))
  denom <- a + colSums(tau * matrix(EL2, nrow=n, ncol=p, byrow=FALSE))
  return(numer / denom)
}

update_s2l <- function(a, tau, EF2) {
  n <- nrow(tau)
  p <- ncol(tau)
  return(1 / (a + rowSums(tau * matrix(EF2, nrow=n, ncol=p, byrow=TRUE))))
}

update_s2f <- function(a, tau, EL2) {
  n <- nrow(tau)
  p <- ncol(tau)
  return(1 / (a + colSums(tau * matrix(EL2, nrow=n, ncol=p, byrow=FALSE))))
}

update_wl <- function(a, pi0, mu, sigma2, tau, Rk, EF, EF2) {
  C1 <- log(1 - pi0) - log(pi0)
  C2 <- 0.5 * (log(a) + log(sigma2) - a * (mu^2 + sigma2) + 1)
  C3 <- rowSums(tau * (Rk * outer(mu, EF) - 0.5 * outer(mu^2 + sigma2, EF2)))
  C <- C1 + C2 + C3
  return(1 / (1 + exp(-C)))
}

update_wf <- function(a, pi0, mu, sigma2, tau, Rk, EL, EL2) {
  C1 <- log(1 - pi0) - log(pi0)
  C2 <- 0.5 * (log(a) + log(sigma2) - a * (mu^2 + sigma2) + 1)
  C3 <- colSums(tau * (Rk * outer(EL, mu) - 0.5 * outer(EL2, mu^2 + sigma2)))
  C <- C1 + C2 + C3
  return(1 / (1 + exp(-C)))
}

# ALGORITHM ---------------------------------------------------------

update_tau <- function(altfl) {
  within(altfl, {
    EL <- compute_EX(wl, mul)
    EL2 <- compute_EX2(wl, mul, s2l)
    EF <- compute_EX(wf, muf)
    EF2 <- compute_EX2(wf, muf, s2f)
    
    R2 <- R2k - 2 * Rk * outer(EL, EF) + outer(EL2, EF2)
    tau <- matrix(1 / colMeans(R2), nrow=nrow(tau), ncol=ncol(tau),
                  byrow=TRUE)
  })
}

update_loadings_post <- function(altfl) {
  within(altfl, {
    EF <- compute_EX(wf, muf)
    EF2 <- compute_EX2(wf, muf, s2f)
    
    mul <- update_mul(al, tau, Rk, EF, EF2)
    s2l <- update_s2l(al, tau, EF2)
    wl <- update_wl(al, pi0l, mul, s2l, tau, Rk, EF, EF2)
  })
}

update_loadings_prior <- function(altfl) {
  within(altfl, {
    EL2 <- compute_EX2(wl, mul, s2l)
    
    al <- update_a(wl, EL2)
    pi0l <- update_pi0(wl)
  })
}
  
update_factor_post <- function(altfl) {
  within(altfl, {
    EL <- compute_EX(wl, mul)
    EL2 <- compute_EX2(wl, mul, s2l)
    
    muf <- update_muf(af, tau, Rk, EL, EL2)
    s2f <- update_s2f(af, tau, EL2)
    wf <- update_wf(af, pi0f, muf, s2f, tau, Rk, EL, EL2)
  })
}

update_factor_prior <- function(altfl) {
  within(altfl, {
    EF2 <- compute_EX2(wf, muf, s2f)
    
    af <- update_a(wf, EF2)
    pi0f <- update_pi0(wf)
  })
}

do_one_update <- function(altfl) {
  obj <- rep(0, 5)
  
  altfl <- update_tau(altfl)
  obj[1] <- compute_obj(altfl)
  
  altfl <- update_loadings_post(altfl)
  obj[2] <- compute_obj(altfl)
  
  altfl <- update_loadings_prior(altfl)
  obj[3] <- compute_obj(altfl)
  
  altfl <- update_factor_post(altfl)
  obj[4] <- compute_obj(altfl)
  
  altfl <- update_factor_prior(altfl)
  obj[5] <- compute_obj(altfl)
  
  return(list(altfl = altfl, obj = obj))
}

optimize_alt_fl <- function(altfl, tol = .01, verbose = FALSE) {
  obj <- compute_obj(altfl)
  diff <- Inf
  
  while (diff > tol) {
    tmp <- do_one_update(altfl)
    new_obj <- tmp$obj[length(tmp$obj)]
    diff <- new_obj - obj
    obj <- new_obj
    if (verbose) {
      message(paste("Objective:", obj))
    }
    altfl <- tmp$altfl
  }
  
  return(altfl)
}

Fit

Using the same dataset as in previous investigations, I fit a FLASH object with four factors (recall that it’s the fourth factor that was causing problems during loadings updates):

load("./data/before_bad.Rdata")

# devtools::install_github("stephenslab/flashr")
devtools::load_all("/Users/willwerscheid/GitHub/flashr")
Loading flashr
# devtools::install_github("stephenslab/flashr")
devtools::load_all("/Users/willwerscheid/GitHub/ebnm")
Loading ebnm
fl <- flash_add_greedy(data, Kmax=4, verbose=FALSE)
fitting factor/loading 1
fitting factor/loading 2
fitting factor/loading 3
fitting factor/loading 4

The objective as computed by FLASH is:

flash_get_objective(data, fl)
[1] -1297135

I now convert the fourth factor to an “altfl” object. The objective as computed by the alternate method is:

altfl <- fl_to_altfl(data, fl, 4)
compute_obj(altfl)
[1] -1297135

So the objective functions agree. This is a good thing.

Next, I attempt to optimize the altfl object:

altfl <- optimize_alt_fl(altfl, verbose=TRUE)
Objective: -1297135.42237706

Nothing happens. This is also a good thing!

Conclusion

That I get the same values in both cases confirms that a) the expressions in the previous note are correct; b) the KL_l and KL_f values obtained using FLASH are in fact reliable.

The algorithm implemented here is, however, very prone to getting stuck in local maxima, and does not appear to be a suitable substitute for the existing FLASH algorithm.

Session information

sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] ebnm_0.1-13   flashr_0.5-12

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.17        pillar_1.2.1        plyr_1.8.4         
 [4] compiler_3.4.3      git2r_0.21.0        workflowr_1.0.1    
 [7] R.methodsS3_1.7.1   R.utils_2.6.0       iterators_1.0.9    
[10] tools_3.4.3         testthat_2.0.0      digest_0.6.15      
[13] tibble_1.4.2        evaluate_0.10.1     memoise_1.1.0      
[16] gtable_0.2.0        lattice_0.20-35     rlang_0.2.0        
[19] Matrix_1.2-12       foreach_1.4.4       commonmark_1.4     
[22] yaml_2.1.17         parallel_3.4.3      withr_2.1.1.9000   
[25] stringr_1.3.0       roxygen2_6.0.1.9000 xml2_1.2.0         
[28] knitr_1.20          devtools_1.13.4     rprojroot_1.3-2    
[31] grid_3.4.3          R6_2.2.2            rmarkdown_1.8      
[34] ggplot2_2.2.1       ashr_2.2-10         magrittr_1.5       
[37] whisker_0.3-2       backports_1.1.2     scales_0.5.0       
[40] codetools_0.2-15    htmltools_0.3.6     MASS_7.3-48        
[43] assertthat_0.2.0    softImpute_1.4      colorspace_1.3-2   
[46] stringi_1.1.6       lazyeval_0.2.1      munsell_0.4.3      
[49] doParallel_1.0.11   pscl_1.5.2          truncnorm_1.0-8    
[52] SQUAREM_2017.10-1   R.oo_1.21.0        

This reproducible R Markdown analysis was created with workflowr 1.0.1