Last updated: 2019-02-25

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20180714)

    The command set.seed(20180714) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 4693348

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    data/.DS_Store
        Ignored:    docs/.DS_Store
        Ignored:    docs/figure/.DS_Store
    
    Untracked files:
        Untracked:  analysis/gd_notes.Rmd
        Untracked:  analysis/trachea3.Rmd
        Untracked:  code/count_sim.R
        Untracked:  code/pathways.R
        Untracked:  code/trachea3.R
        Untracked:  data/lowrank/
        Untracked:  data/tmp14.rds
        Untracked:  data/tmpdata.rds
        Untracked:  data/tmplfsr.rds
        Untracked:  data/trachea3/
        Untracked:  docs/figure/count_notes.Rmd/
        Untracked:  docs/figure/trachea3.Rmd/
    
    Unstaged changes:
        Deleted:    data/before_bad.Rdata
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    html f2b86c1 Jason Willwerscheid 2018-12-05 Build site.
    Rmd a89c222 Jason Willwerscheid 2018-12-05 wflow_publish(“analysis/trachea.Rmd”)
    html 8327d75 Jason Willwerscheid 2018-10-23 Build site.
    Rmd 28891d1 Jason Willwerscheid 2018-10-23 workflowr::wflow_publish(“analysis/trachea.Rmd”)


Introduction and Code

I fit 30 factors to the drop-seq dataset discussed in Montoro et al. I removed all genes with zero total counts and did a log1p transform of the counts. I used nonnegative priors for gene loadings and normal-mixture priors for cell loadings.

# Add 30 factors with rough backfits after every 5 factors.
fl <- flashier(data, greedy.Kmax = 30, var.type = 1, 
               prior.type = c("nonnegative", "normal.mix"), 
               ash.param = list(optmethod = "mixSQP"), 
               backfit.every = 5, final.backfit = TRUE, 
               backfit.order = "montaigne", warmstart.backfits = FALSE)
# Refine by backfitting.
fl <- flashier(data, flash.init = fl, backfit = "only",
               backfit.order = "dropout", backfit.maxiter = 200)

The following code is used to produce the boxplots and tables below.

suppressMessages({
  library(ggplot2)
  library(topGO)
  library(org.Mm.eg.db)
})
#> Warning: package 'ggplot2' was built under R version 3.4.4

fl <- readRDS("~/Downloads/DropSeq30_backfit.rds")
# Remove large data object to free up memory.
fl$fit$Y <- NULL

# Data frame containing cell type and loadings for each factor.
PSdf <- data.frame(fl$loadings$normalized.loadings[[2]])
cell.names <- rownames(fl$loadings$normalized.loadings[[2]])
cell.types <- as.factor(sapply(strsplit(cell.names, "_"), `[`, 3))
levels(cell.types)
#> [1] "Basal"          "Ciliated"       "Club"           "Goblet"        
#> [5] "Ionocyte"       "Neuroendocrine" "Tuft"
levels(cell.types) <- c("Bas", "Cil", "Clb", "Gob", "Ion", "Nec", "Tft")
PSdf$cell.type <- cell.types

# Need to select signficant genes for topGO.
#   Scale gene loadings by scale constant * maximum cell loading.
s <- fl$loadings$scale.constant * 
  apply(abs(fl$loadings$normalized.loadings[[2]]), 2, max)
gene.loadings <- fl$loadings$normalized.loadings[[1]]
gene.loadings <- gene.loadings * rep(s, each = nrow(gene.loadings))
#   Get a pseudo-t statistic by dividing by the residual SE.
gene.t <- gene.loadings * sqrt(fl$fit$tau)
#   Convert to a p-value.
gene.p <- 2 * (1 - pnorm(abs(gene.t)))
#   Select significant genes using Benjamini-Hochberg.
BH <- function(k, alpha = 0.01) {
  pvals <- gene.p[, k]
  selected <- rep(0, length(pvals))
  names(selected) <- names(pvals)
  
  n <- length(pvals)
  sorted.pvals <- sort(pvals)
  BH <- sorted.pvals < alpha / (n - 0:(n - 1))
  cutoff <- min(which(!BH))
  selected[pvals < sorted.pvals[cutoff]] <- 1
  
  return(selected)
}
gene.sig <- sapply(1:ncol(gene.p), BH)

# How many significant genes per factor are there?
colSums(gene.sig)
#>  [1] 286 512  98  74 163 183 131 198 168 541 364 365 104 558 535 499  31
#> [18] 504 406 436   3 183   0  96 448 326 361 404  45 156

# Omit factors with PVE below a certain (empirically determined) threshold.
kset <- (1:ncol(gene.p))[fl$pve > 0.0001 & colSums(gene.sig) > 9]

# I also want to see which factors contain genes mentioned in the paper.
paper.genes <- data.frame(
  gene = c("Nfia", "Ascl1", "Ascl2", "Ascl3", "Foxq1", "Cdhr3", "Rgs13",
           "Muc5b", "Notch2", "Il13ra1", "Krt4", "Krt13", "Krt8", "Ecm1",
           "S100a11", "Cldn3", "Lgals3", "Anxa1", "Il25", "Tslp", "Alox5ap",
           "Ptprc", "Pou2f3", "Gfi1b", "Spib", "Sox9", "Gp2", "Tff1",
           "Tff2", "Lman1l", "P2rx4", "Muc5ac", "Dcpp1", "Dcpp2", "Dcpp3",
           "Atp6v1c2", "Atp6v0d2", "Cftr", "Aqp3", "Krt5", "Dapl1", "Hspa1a",
           "Trp63", "Scgb1a1", "Krt15", "Cyp2f2", "Lypd2", "Cbr2", "Foxj1",
           "Ccdc153", "Ccdc113", "Mlf1", "Lztfl1", "Chga", "Dclk1"),
  type = c("Club", "NEC", "Tuft", "Ion", "Goblet", "Cil", "Tuft",
           "Club", "Club", "Club", "Hill", "Hill", "Basal", "Hill",
           "Hill", "Hill", "Hill", "Hill", "Tuft", "Tuft", "Tuft2",
           "Tuft2", "Tuft1", "Tuft2", "Tuft2", "Tuft2", "Goblet", "Gob1",
           "Gob1", "Gob1", "Gob1", "Gob1", "Gob2", "Gob2", "Gob2",
           "Ion", "Ion", "Ion", "BM", "BM", "BM", "BM",
           "BM", "ClbM", "ClbM", "ClbM", "ClbM", "ClbM", "CilM",
           "CilM", "CilM", "CilM", "CilM", "NECM", "TftM"))
paper.genes$gene <- as.character(paper.genes$gene)
levels(paper.genes$type) <- c("Basal", "Basal (Marker)", "Ciliated", 
                              "Ciliated (Marker)", "Club (Marker)", "Club",
                              "Goblet-1", "Goblet-2", "Goblet", "Hillock",
                              "Ionocyte", "NEC", "NEC (Marker)",
                              "Tuft (Marker)", "Tuft", "Tuft-1", "Tuft-2")

# Set up topGOdata object.
GO.list <- as.factor(gene.sig[, 1])
GOdata <- new("topGOdata", ontology = "BP", allGenes = GO.list,
              annot = annFUN.org, mapping = "org.Mm.eg", ID = "symbol")
#> 
#> Building most specific GOs .....
#>  ( 11286 GO terms found. )
#> 
#> Build GO DAG topology ..........
#>  ( 15215 GO terms and 35696 relations. )
#> 
#> Annotating nodes ...............
#>  ( 15591 genes annotated to the GO terms. )
# Loop over kset.
for (k in kset) {
  cat(paste0("## Factor ", k, " (PVE: ",
             formatC(fl$pve[k], format = "f", digits = 4), ")\n"))
  fctr <- paste0("X", k)
  plot(ggplot(PSdf, aes_string(x = "cell.type", y = fctr)) +
         geom_boxplot(outlier.shape = NA, color = "red") +
         geom_jitter(position = position_jitter(0.2), cex = 0.1) +
         labs(x = "Cell Type", y = paste("Factor", k, "value")))
  cat("\n")
  
  mentions <- which(gene.sig[paper.genes$gene, k] == 1)
  if (length(mentions) > 0) {
    mentions.df <- paper.genes[mentions, ]
    mentions.df$t.val <- gene.t[names(mentions), k]
    cat("Significant genes that are also mentioned in the paper:\n")
    print(knitr::kable(mentions.df))
    cat("\n")
  }
  
  cat("Gene Ontology terms:\n")
  GOdata@allScores <- as.factor(gene.sig[, k])
  result <- suppressMessages(
    runTest(GOdata, algorithm = "classic", statistic = "fisher")
  )
  allRes <- GenTable(GOdata, classic = result, topNodes = 10)
  print(knitr::kable(allRes))
  cat("\n")
}

Factor 1 (PVE: 0.5246)

Expand here to see past versions of factors2-1.png:
Version Author Date
f2b86c1 Jason Willwerscheid 2018-12-05

Significant genes that are also mentioned in the paper:

gene type t.val
13 Krt8 Basal 7.242263
15 S100a11 Hillock 17.425570
16 Cldn3 Hillock 7.228331
17 Lgals3 Hillock 10.231025
18 Anxa1 Hillock 11.827277
39 Aqp3 Basal (Marker) 7.943683
42 Hspa1a Basal (Marker) 5.491426
44 Scgb1a1 Club (Marker) 9.262051
45 Krt15 Club (Marker) 11.714101
46 Cyp2f2 Club (Marker) 27.970810
47 Lypd2 Club (Marker) 11.379180
48 Cbr2 Club (Marker) 16.672470

Gene Ontology terms:

GO.ID Term Annotated Significant Expected classic
GO:0006518 peptide metabolic process 682 54 11.20 1.6e-22
GO:0006412 translation 539 46 8.85 1.7e-20
GO:0043043 peptide biosynthetic process 560 46 9.20 8.0e-20
GO:0043603 cellular amide metabolic process 802 54 13.17 2.8e-19
GO:0043604 amide biosynthetic process 626 46 10.28 6.6e-18
GO:1901566 organonitrogen compound biosynthetic pro… 1386 68 22.76 6.4e-17
GO:0002181 cytoplasmic translation 60 14 0.99 6.4e-13
GO:0046034 ATP metabolic process 191 21 3.14 6.1e-12
GO:0009205 purine ribonucleoside triphosphate metab… 213 21 3.50 4.9e-11
GO:0009126 purine nucleoside monophosphate metaboli… 216 21 3.55 6.4e-11

Factor 2 (PVE: 0.0189)

Expand here to see past versions of factors2-2.png:
Version Author Date
f2b86c1 Jason Willwerscheid 2018-12-05

Significant genes that are also mentioned in the paper:

gene type t.val
6 Cdhr3 Ciliated 14.432419
13 Krt8 Basal 7.915175
15 S100a11 Hillock 8.134064
16 Cldn3 Hillock 8.365458
17 Lgals3 Hillock 6.710951
18 Anxa1 Hillock 8.197110
42 Hspa1a Basal (Marker) 5.422251
46 Cyp2f2 Club (Marker) 9.230342
48 Cbr2 Club (Marker) 6.684108
49 Foxj1 Ciliated (Marker) 14.103074
50 Ccdc153 Ciliated (Marker) 33.342495
51 Ccdc113 Ciliated (Marker) 20.003698
52 Mlf1 Ciliated (Marker) 20.536544

Gene Ontology terms:

GO.ID Term Annotated Significant Expected classic
GO:0003341 cilium movement 68 38 1.92 < 1e-30
GO:0044782 cilium organization 283 65 8.00 < 1e-30
GO:0060271 cilium assembly 265 60 7.50 < 1e-30
GO:0007018 microtubule-based movement 242 53 6.85 < 1e-30
GO:0035082 axoneme assembly 56 29 1.58 1.8e-30
GO:0120031 plasma membrane bounded cell projection … 432 65 12.22 3.6e-29
GO:0030031 cell projection assembly 439 65 12.42 9.3e-29
GO:0001578 microtubule bundle formation 84 30 2.38 1.8e-25
GO:0007017 microtubule-based process 630 73 17.82 1.9e-25
GO:0070925 organelle assembly 650 68 18.39 3.5e-21

Factor 3 (PVE: 0.0387)

Expand here to see past versions of factors2-3.png:
Version Author Date
f2b86c1 Jason Willwerscheid 2018-12-05

Significant genes that are also mentioned in the paper:

gene type t.val
13 Krt8 Basal 5.067801
16 Cldn3 Hillock 6.660415
44 Scgb1a1 Club (Marker) 6.303162
46 Cyp2f2 Club (Marker) 7.803280
47 Lypd2 Club (Marker) 5.961594
48 Cbr2 Club (Marker) 5.262580

Gene Ontology terms:

GO.ID Term Annotated Significant Expected classic
GO:0043618 regulation of transcription from RNA pol… 44 6 0.24 1.4e-07
GO:0043620 regulation of DNA-templated transcriptio… 48 6 0.26 2.4e-07
GO:0035914 skeletal muscle cell differentiation 59 6 0.33 8.4e-07
GO:0050896 response to stimulus 6040 55 33.32 1.9e-06
GO:0019730 antimicrobial humoral response 41 5 0.23 2.9e-06
GO:0007519 skeletal muscle tissue development 139 7 0.77 1.1e-05
GO:0009888 tissue development 1492 22 8.23 1.4e-05
GO:0060538 skeletal muscle organ development 144 7 0.79 1.4e-05
GO:0035821 modification of morphology or physiology… 96 6 0.53 1.5e-05
GO:0046686 response to cadmium ion 28 4 0.15 1.6e-05

Factor 4 (PVE: 0.0581)

Expand here to see past versions of factors2-4.png:
Version Author Date
f2b86c1 Jason Willwerscheid 2018-12-05

Significant genes that are also mentioned in the paper:

gene type t.val
39 Aqp3 Basal (Marker) 5.969027
42 Hspa1a Basal (Marker) 6.596314
46 Cyp2f2 Club (Marker) 6.806845

Gene Ontology terms:

GO.ID Term Annotated Significant Expected classic
GO:0043618 regulation of transcription from RNA pol… 44 4 0.17 2.6e-05
GO:0010941 regulation of cell death 1472 17 5.76 3.3e-05
GO:0043620 regulation of DNA-templated transcriptio… 48 4 0.19 3.6e-05
GO:0000028 ribosomal small subunit assembly 19 3 0.07 5.3e-05
GO:0035914 skeletal muscle cell differentiation 59 4 0.23 8.2e-05
GO:0009612 response to mechanical stimulus 119 5 0.47 0.00010
GO:0043604 amide biosynthetic process 626 10 2.45 0.00014
GO:0021761 limbic system development 70 4 0.27 0.00016
GO:0050896 response to stimulus 6040 38 23.63 0.00016
GO:0007519 skeletal muscle tissue development 139 5 0.54 0.00021

Factor 5 (PVE: 0.0016)

Expand here to see past versions of factors2-5.png:
Version Author Date
f2b86c1 Jason Willwerscheid 2018-12-05

Gene Ontology terms:

GO.ID Term Annotated Significant Expected classic
GO:0051301 cell division 512 60 4.56 < 1e-30
GO:0007049 cell cycle 1426 80 12.71 < 1e-30
GO:1903047 mitotic cell cycle process 553 56 4.93 < 1e-30
GO:0022402 cell cycle process 912 66 8.13 < 1e-30
GO:0000278 mitotic cell cycle 714 60 6.37 < 1e-30
GO:0007059 chromosome segregation 275 43 2.45 < 1e-30
GO:0140014 mitotic nuclear division 222 33 1.98 < 1e-30
GO:0000280 nuclear division 341 38 3.04 < 1e-30
GO:0098813 nuclear chromosome segregation 212 32 1.89 1.5e-30
GO:0048285 organelle fission 386 38 3.44 3.0e-29

Factor 6 (PVE: 0.0076)

Expand here to see past versions of factors2-6.png:
Version Author Date
f2b86c1 Jason Willwerscheid 2018-12-05

Significant genes that are also mentioned in the paper:

gene type t.val
11 Krt4 Hillock 14.016113
12 Krt13 Hillock 15.089416
13 Krt8 Basal 7.489441
14 Ecm1 Hillock 16.277826
15 S100a11 Hillock 12.758571
16 Cldn3 Hillock 9.570576
17 Lgals3 Hillock 16.290688
18 Anxa1 Hillock 17.406668
39 Aqp3 Basal (Marker) 10.049004
45 Krt15 Club (Marker) 10.647146
46 Cyp2f2 Club (Marker) 9.785778
48 Cbr2 Club (Marker) 5.267489

Gene Ontology terms:

GO.ID Term Annotated Significant Expected classic
GO:0031579 membrane raft organization 22 6 0.23 8.3e-08
GO:0031424 keratinization 24 6 0.25 1.5e-07
GO:0007162 negative regulation of cell adhesion 224 13 2.37 7.6e-07
GO:0001765 membrane raft assembly 10 4 0.11 2.4e-06
GO:0022610 biological adhesion 1075 29 11.38 2.7e-06
GO:0022408 negative regulation of cell-cell adhesio… 146 10 1.55 3.4e-06
GO:0098609 cell-cell adhesion 594 20 6.29 4.8e-06
GO:0071709 membrane assembly 25 5 0.26 5.6e-06
GO:0007155 cell adhesion 1064 28 11.26 6.6e-06
GO:0030216 keratinocyte differentiation 97 8 1.03 8.6e-06

Factor 7 (PVE: 0.0185)

Expand here to see past versions of factors2-7.png:
Version Author Date
f2b86c1 Jason Willwerscheid 2018-12-05

Significant genes that are also mentioned in the paper:

gene type t.val
15 S100a11 Hillock 10.231936
16 Cldn3 Hillock 6.118989
17 Lgals3 Hillock 6.959122
18 Anxa1 Hillock 7.969162
44 Scgb1a1 Club (Marker) 9.736032
45 Krt15 Club (Marker) 7.180916
46 Cyp2f2 Club (Marker) 20.148326
47 Lypd2 Club (Marker) 8.531190
48 Cbr2 Club (Marker) 11.853278

Gene Ontology terms:

GO.ID Term Annotated Significant Expected classic
GO:0006518 peptide metabolic process 682 19 4.86 3.1e-07
GO:0019730 antimicrobial humoral response 41 6 0.29 4.2e-07
GO:0006412 translation 539 16 3.84 1.3e-06
GO:0043043 peptide biosynthetic process 560 16 3.99 2.1e-06
GO:0043603 cellular amide metabolic process 802 19 5.71 3.5e-06
GO:0002181 cytoplasmic translation 60 6 0.43 4.2e-06
GO:0000028 ribosomal small subunit assembly 19 4 0.14 8.7e-06
GO:0043604 amide biosynthetic process 626 16 4.46 8.9e-06
GO:0042221 response to chemical 2842 39 20.23 1.6e-05
GO:0006880 intracellular sequestering of iron ion 2 2 0.01 5.0e-05

Factor 8 (PVE: 0.0028)

Expand here to see past versions of factors2-8.png:
Version Author Date
f2b86c1 Jason Willwerscheid 2018-12-05

Significant genes that are also mentioned in the paper:

gene type t.val
7 Rgs13 Tuft 24.955241
13 Krt8 Basal 7.649654
18 Anxa1 Hillock 5.991935
19 Il25 Tuft 8.547482
21 Alox5ap Tuft-2 16.380566
23 Pou2f3 Tuft-1 8.797474
25 Spib Tuft-2 13.945543
26 Sox9 Tuft-2 9.185370
44 Scgb1a1 Club (Marker) 5.237961
55 Dclk1 Tuft (Marker) 15.476724

Gene Ontology terms:

GO.ID Term Annotated Significant Expected classic
GO:0007186 G-protein coupled receptor signaling pat… 536 19 6.02 9.6e-06
GO:0065007 biological regulation 8828 126 99.09 1.8e-05
GO:0021979 hypothalamus cell differentiation 6 3 0.07 2.7e-05
GO:0050896 response to stimulus 6040 94 67.80 3.8e-05
GO:0006518 peptide metabolic process 682 20 7.66 8.2e-05
GO:0043603 cellular amide metabolic process 802 22 9.00 9.5e-05
GO:0019370 leukotriene biosynthetic process 9 3 0.10 0.00011
GO:0006880 intracellular sequestering of iron ion 2 2 0.02 0.00013
GO:0097577 sequestering of iron ion 2 2 0.02 0.00013
GO:0098609 cell-cell adhesion 594 18 6.67 0.00013

Factor 9 (PVE: 0.0012)

Expand here to see past versions of factors2-9.png:
Version Author Date
f2b86c1 Jason Willwerscheid 2018-12-05

Significant genes that are also mentioned in the paper:

gene type t.val
2 Ascl1 NEC 14.57633
54 Chga NEC (Marker) 45.57047

Gene Ontology terms:

GO.ID Term Annotated Significant Expected classic
GO:0050877 nervous system process 698 28 6.72 1.1e-10
GO:0003008 system process 1209 37 11.63 1.7e-10
GO:0007610 behavior 526 24 5.06 2.1e-10
GO:0099504 synaptic vesicle cycle 113 11 1.09 1.1e-08
GO:0007268 chemical synaptic transmission 471 20 4.53 2.6e-08
GO:0098916 anterograde trans-synaptic signaling 471 20 4.53 2.6e-08
GO:0099537 trans-synaptic signaling 472 20 4.54 2.7e-08
GO:0099536 synaptic signaling 473 20 4.55 2.8e-08
GO:0050804 modulation of chemical synaptic transmis… 300 16 2.89 3.2e-08
GO:0006812 cation transport 840 26 8.08 1.1e-07

Factor 13 (PVE: 0.0027)

Expand here to see past versions of factors2-10.png:
Version Author Date
f2b86c1 Jason Willwerscheid 2018-12-05

Significant genes that are also mentioned in the paper:

gene type t.val
1 Nfia Club 5.591073
39 Aqp3 Basal (Marker) 7.844628
41 Dapl1 Basal (Marker) 6.546861
46 Cyp2f2 Club (Marker) 10.639600
48 Cbr2 Club (Marker) 5.402642

Gene Ontology terms:

GO.ID Term Annotated Significant Expected classic
GO:0019886 antigen processing and presentation of e… 14 4 0.08 7.9e-07
GO:0002495 antigen processing and presentation of p… 18 4 0.10 2.4e-06
GO:0002504 antigen processing and presentation of p… 19 4 0.10 3.0e-06
GO:0002478 antigen processing and presentation of e… 21 4 0.11 4.6e-06
GO:0019884 antigen processing and presentation of e… 26 4 0.14 1.1e-05
GO:0006518 peptide metabolic process 682 14 3.72 1.8e-05
GO:0043603 cellular amide metabolic process 802 14 4.37 0.00010
GO:0048002 antigen processing and presentation of p… 49 4 0.27 0.00014
GO:0009636 response to toxic substance 94 5 0.51 0.00016
GO:0002250 adaptive immune response 301 8 1.64 0.00023

Factor 17 (PVE: 0.0003)

Expand here to see past versions of factors2-11.png:
Version Author Date
f2b86c1 Jason Willwerscheid 2018-12-05

Gene Ontology terms:

GO.ID Term Annotated Significant Expected classic
GO:0034213 quinolinate catabolic process 1 1 0.00 0.0012
GO:0050976 detection of mechanical stimulus involve… 2 1 0.00 0.0023
GO:1904106 protein localization to microvillus 2 1 0.00 0.0023
GO:0023041 neuronal signal transduction 4 1 0.00 0.0046
GO:0050975 sensory perception of touch 4 1 0.00 0.0046
GO:0072526 pyridine-containing compound catabolic p… 4 1 0.00 0.0046
GO:1904970 brush border assembly 4 1 0.00 0.0046
GO:0002250 adaptive immune response 301 3 0.35 0.0047
GO:0009582 detection of abiotic stimulus 91 2 0.11 0.0049
GO:0009581 detection of external stimulus 92 2 0.11 0.0050

Factor 24 (PVE: 0.0006)

Expand here to see past versions of factors2-12.png:
Version Author Date
f2b86c1 Jason Willwerscheid 2018-12-05

Significant genes that are also mentioned in the paper:

gene type t.val
26 Sox9 Tuft-2 5.658985
27 Gp2 Goblet 27.331516
28 Tff1 Goblet-1 13.907192
29 Tff2 Goblet-1 12.207553
30 Lman1l Goblet-1 22.949418
33 Dcpp1 Goblet-2 9.848094
34 Dcpp2 Goblet-2 10.711118
35 Dcpp3 Goblet-2 11.463935

Gene Ontology terms:

GO.ID Term Annotated Significant Expected classic
GO:0019722 calcium-mediated signaling 125 6 0.67 5.4e-05
GO:0006884 cell volume homeostasis 17 3 0.09 9.4e-05
GO:0019932 second-messenger-mediated signaling 207 7 1.10 0.00012
GO:0001580 detection of chemical stimulus involved … 19 3 0.10 0.00013
GO:0050913 sensory perception of bitter taste 21 3 0.11 0.00018
GO:0050912 detection of chemical stimulus involved … 23 3 0.12 0.00024
GO:0030968 endoplasmic reticulum unfolded protein r… 60 4 0.32 0.00029
GO:0050907 detection of chemical stimulus involved … 26 3 0.14 0.00035
GO:0034620 cellular response to unfolded protein 66 4 0.35 0.00042
GO:0032808 lacrimal gland development 7 2 0.04 0.00058

Factor 29 (PVE: 0.0001)

Expand here to see past versions of factors2-13.png:
Version Author Date
f2b86c1 Jason Willwerscheid 2018-12-05

Significant genes that are also mentioned in the paper:

gene type t.val
4 Ascl3 Ionocyte 27.53504
37 Atp6v0d2 Ionocyte 22.27301
38 Cftr Ionocyte 17.94190

Gene Ontology terms:

GO.ID Term Annotated Significant Expected classic
GO:0007600 sensory perception 382 8 1.00 5.7e-06
GO:0050877 nervous system process 698 10 1.84 9.6e-06
GO:0055067 monovalent inorganic cation homeostasis 123 5 0.32 1.7e-05
GO:0003008 system process 1209 12 3.18 4.3e-05
GO:0006821 chloride transport 78 4 0.21 5.1e-05
GO:0007191 adenylate cyclase-activating dopamine re… 5 2 0.01 6.7e-05
GO:0030321 transepithelial chloride transport 5 2 0.01 6.7e-05
GO:1901617 organic hydroxy compound biosynthetic pr… 166 5 0.44 7.1e-05
GO:0030004 cellular monovalent inorganic cation hom… 91 4 0.24 9.3e-05
GO:0042421 norepinephrine biosynthetic process 6 2 0.02 1e-04

Session information

sessionInfo()
#> R version 3.4.3 (2017-11-30)
#> Platform: x86_64-apple-darwin15.6.0 (64-bit)
#> Running under: macOS High Sierra 10.13.6
#> 
#> Matrix products: default
#> BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
#> LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
#> 
#> locale:
#> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#> 
#> attached base packages:
#> [1] stats4    parallel  stats     graphics  grDevices utils     datasets 
#> [8] methods   base     
#> 
#> other attached packages:
#>  [1] org.Mm.eg.db_3.5.0   topGO_2.30.1         SparseM_1.77        
#>  [4] GO.db_3.5.0          AnnotationDbi_1.40.0 IRanges_2.12.0      
#>  [7] S4Vectors_0.16.0     Biobase_2.38.0       graph_1.56.0        
#> [10] BiocGenerics_0.24.0  ggplot2_3.1.0       
#> 
#> loaded via a namespace (and not attached):
#>  [1] xfun_0.4           lattice_0.20-35    colorspace_1.3-2  
#>  [4] htmltools_0.3.6    yaml_2.2.0         blob_1.1.0        
#>  [7] rlang_0.3.0.1      R.oo_1.21.0        pillar_1.2.1      
#> [10] glue_1.3.0         withr_2.1.2.9000   DBI_0.7           
#> [13] R.utils_2.6.0      bit64_0.9-7        bindrcpp_0.2      
#> [16] matrixStats_0.54.0 bindr_0.1          plyr_1.8.4        
#> [19] stringr_1.3.1      munsell_0.5.0      gtable_0.2.0      
#> [22] workflowr_1.0.1    flashier_0.1.0     R.methodsS3_1.7.1 
#> [25] evaluate_0.12      memoise_1.1.0      labeling_0.3      
#> [28] knitr_1.21.6       highr_0.7          Rcpp_1.0.0        
#> [31] scales_1.0.0       backports_1.1.2    bit_1.1-12        
#> [34] digest_0.6.18      stringi_1.2.4      dplyr_0.7.4       
#> [37] grid_3.4.3         rprojroot_1.3-2    tools_3.4.3       
#> [40] magrittr_1.5       lazyeval_0.2.1     tibble_1.4.2      
#> [43] RSQLite_2.0        whisker_0.3-2      pkgconfig_2.0.1   
#> [46] assertthat_0.2.0   rmarkdown_1.11     R6_2.3.0          
#> [49] git2r_0.21.0       compiler_3.4.3

This reproducible R Markdown analysis was created with workflowr 1.0.1