• Raw data
  • BLUPs
  • Pedigree
  • Parent-wise Cross-validation
    • Prediction accuracy
      • Selection Index Accuracy
      • Accuracy predicting cross-means
      • Accuracy predicting variance params
    • [TO REDO] Accuracy based only on large families
  • [RUNNING] Genomic Mate Selection
  • Genetic Gain Estimates

Last updated: 2021-07-14

Checks: 7 0

Knit directory: implementGMSinCassava/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210504) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 772750a. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/accuracies.png
    Ignored:    analysis/fig2.png
    Ignored:    analysis/fig3.png
    Ignored:    analysis/fig4.png
    Ignored:    code/.DS_Store
    Ignored:    data/.DS_Store

Untracked files:
    Untracked:  accuracies.png
    Untracked:  analysis/docs/
    Untracked:  analysis/inputsForSimulation.Rmd
    Untracked:  analysis/speedUpPredCrossVar.Rmd
    Untracked:  code/AlphaAssign-Python/
    Untracked:  code/calcGameticLD.cpp
    Untracked:  code/col_sums.cpp
    Untracked:  code/convertDart2vcf.R
    Untracked:  code/helloworld.cpp
    Untracked:  code/imputationFunctions.R
    Untracked:  code/matmult.cpp
    Untracked:  code/misc.cpp
    Untracked:  code/test.cpp
    Untracked:  data/CassavaGeneticMap/
    Untracked:  data/DatabaseDownload_2021May04/
    Untracked:  data/GBSdataMasterList_31818.csv
    Untracked:  data/IITA_GBStoPhenoMaster_33018.csv
    Untracked:  data/NRCRI_GBStoPhenoMaster_40318.csv
    Untracked:  data/PedigreeGeneticGainCycleTime_aafolabi_01122020.xls
    Untracked:  data/blups_forCrossVal.rds
    Untracked:  data/chr1_RefPanelAndGSprogeny_ReadyForGP_72719.fam
    Untracked:  data/dosages_IITA_filtered_2021May13.rds
    Untracked:  data/genmap_2021May13.rds
    Untracked:  data/haps_IITA_filtered_2021May13.rds
    Untracked:  data/recombFreqMat_1minus2c_2021May13.rds
    Untracked:  fig2.png
    Untracked:  fig3.png
    Untracked:  figure/
    Untracked:  output/IITA_CleanedTrialData_2021May10.rds
    Untracked:  output/IITA_ExptDesignsDetected_2021May10.rds
    Untracked:  output/IITA_blupsForModelTraining_twostage_asreml_2021May10.rds
    Untracked:  output/IITA_trials_NOT_identifiable.csv
    Untracked:  output/crossValPredsA.rds
    Untracked:  output/crossValPredsAD.rds
    Untracked:  output/cvAD_5rep5fold_markerEffects.rds
    Untracked:  output/cvAD_5rep5fold_meanPredAccuracy.rds
    Untracked:  output/cvAD_5rep5fold_parentfolds.rds
    Untracked:  output/cvAD_5rep5fold_predMeans.rds
    Untracked:  output/cvAD_5rep5fold_predVars.rds
    Untracked:  output/cvAD_5rep5fold_varPredAccuracy.rds
    Untracked:  output/cvDirDom_5rep5fold_markerEffects.rds
    Untracked:  output/cvDirDom_5rep5fold_meanPredAccuracy.rds
    Untracked:  output/cvDirDom_5rep5fold_parentfolds.rds
    Untracked:  output/cvDirDom_5rep5fold_predMeans.rds
    Untracked:  output/cvDirDom_5rep5fold_predVars.rds
    Untracked:  output/cvDirDom_5rep5fold_varPredAccuracy.rds
    Untracked:  output/cvMeanPredAccuracyA.rds
    Untracked:  output/cvMeanPredAccuracyAD.rds
    Untracked:  output/cvPredMeansA.rds
    Untracked:  output/cvPredMeansAD.rds
    Untracked:  output/cvVarPredAccuracyA.rds
    Untracked:  output/cvVarPredAccuracyAD.rds
    Untracked:  output/estimateSelectionError.rds
    Untracked:  output/genomicPredictions_ModelAD.rds
    Untracked:  output/genomicPredictions_ModelDirDom.rds
    Untracked:  output/kinship_A_IITA_2021May13.rds
    Untracked:  output/kinship_D_IITA_2021May13.rds
    Untracked:  output/markEffsTest.rds
    Untracked:  output/markerEffects.rds
    Untracked:  output/markerEffectsA.rds
    Untracked:  output/markerEffectsAD.rds
    Untracked:  output/maxNOHAV_byStudy.csv
    Untracked:  output/obsCrossMeansAndVars.rds
    Untracked:  output/parentfolds.rds
    Untracked:  output/ped2check_genome.rds
    Untracked:  output/ped2genos.txt
    Untracked:  output/pednames2keep.txt
    Untracked:  output/pednames_Prune100_25_pt25.log
    Untracked:  output/pednames_Prune100_25_pt25.nosex
    Untracked:  output/pednames_Prune100_25_pt25.prune.in
    Untracked:  output/pednames_Prune100_25_pt25.prune.out
    Untracked:  output/potential_dams.txt
    Untracked:  output/potential_sires.txt
    Untracked:  output/predVarTest.rds
    Untracked:  output/samples2keep_IITA_2021May13.txt
    Untracked:  output/samples2keep_IITA_MAFpt01_prune50_25_pt98.log
    Untracked:  output/samples2keep_IITA_MAFpt01_prune50_25_pt98.nosex
    Untracked:  output/samples2keep_IITA_MAFpt01_prune50_25_pt98.prune.in
    Untracked:  output/samples2keep_IITA_MAFpt01_prune50_25_pt98.prune.out
    Untracked:  output/verified_ped.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/07-Results.Rmd) and HTML (docs/07-Results.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 772750a wolfemd 2021-07-14 DirDom model and selection index calc fully integrated functions.

Raw data

Summary of the number of unique plots, locations, years, etc. in the cleaned plot-basis data. See here for details..

library(tidyverse); library(magrittr); library(ragg)
rawdata<-readRDS(file=here::here("output","IITA_ExptDesignsDetected_2021May10.rds"))
rawdata %>% 
  summarise(Nplots=nrow(.),
            across(c(locationName,studyYear,studyName,TrialType,GID), ~length(unique(.)),.names = "N_{.col}")) %>% 
  rmarkdown::paged_table()
ABCDEFGHIJ0123456789
Nplots
<int>
N_locationName
<int>
N_studyYear
<int>
N_studyName
<int>
N_TrialType
<int>
N_GID
<int>
4795881332186410254339

This is not the same number of clones as are expected to be genotyped-and-phenotyped.

Break down the plots based on the trial design and TrialType (really a grouping of the population that is breeding program specific), captured by two logical variables, CompleteBlocks and IncompleteBlocks.

rawdata %>% 
  count(TrialType,CompleteBlocks,IncompleteBlocks) %>% 
  spread(TrialType,n) %>% 
  rmarkdown::paged_table()
ABCDEFGHIJ0123456789
CompleteBlocks
<lgl>
IncompleteBlocks
<lgl>
AYT
<int>
CET
<int>
Conservation
<int>
CrossingBlock
<int>
ExpCET
<int>
GeneticGain
<int>
NCRP
<int>
PYT
<int>
FALSEFALSENA27913997557NA6729NA1361
FALSETRUE4031587NA98918655823NA801
TRUEFALSE41750460NANANA18310263034685
TRUETRUE6950320NANANA17755115217053

Next, look at breakdown of plots by TrialType (rows) and locations (columns):

rawdata %>% 
  count(locationName,TrialType) %>% 
  spread(locationName,n) %>% 
  rmarkdown::paged_table()
ABCDEFGHIJ0123456789
TrialType
<chr>
Abuja
<int>
Ago-Owu
<int>
Ibadan
<int>
Ikenne
<int>
Ilorin
<int>
Jos
<int>
Kano
<int>
Malam Madori
<int>
Mokwa
<int>
Ubiaja
<int>
Umudike
<int>
Warri
<int>
Zaria
<int>
AYT4076122331520829669252011016695544913215583957
CETNANA39085104391548410086524242257NANA4872
ConservationNANA997NANANANANANANANANANA
CrossingBlockNANA831NANANANANANA715NANANA
ExpCETNANA592700NANANANA329244NANANA
GeneticGainNA13212261NANA474NA2837920416947NANA6762
NCRP3362161076408NANANANA854336NANA556
PYT31414302928210168NA95555888150472149NA11621954
SNNANA18976010947NANANANANANANANANA
UYT1156744177774285208516898270914735636552221007139
traits<-c("MCMDS","DM","PLTHT","BRNHT1","BRLVLS","HI",
          "logDYLD", # <-- logDYLD now included. 
          "logFYLD","logTOPYLD","logRTNO","TCHART","LCHROMO","ACHROMO","BCHROMO")
rawdata %>% 
  select(locationName,studyYear,studyName,TrialType,any_of(traits)) %>% 
  pivot_longer(cols = any_of(traits), values_to = "Value", names_to = "Trait") %>% 
  ggplot(.,aes(x=Value,fill=Trait)) + geom_histogram() + facet_wrap(~Trait, scales='free') + 
  theme_bw() + scale_fill_viridis_d() + 
  labs(title = "Distribution of Raw Phenotypic Values")

How many genotyped-and-phenotyped clones?

rawdata %>% 
  select(locationName,studyYear,studyName,TrialType,germplasmName,FullSampleName,GID,any_of(traits)) %>% 
  pivot_longer(cols = any_of(traits), values_to = "Value", names_to = "Trait") %>%
  filter(!is.na(Value),!is.na(FullSampleName)) %>%
  distinct(germplasmName,FullSampleName,GID) %>% 
  rmarkdown::paged_table()
ABCDEFGHIJ0123456789
germplasmName
<chr>
FullSampleName
<chr>
GID
<chr>
IITA-TMS-IBA30572I30572:250253643I30572:250253643
IITA-TMS-IBA8200058I8200058:250304538I8200058:250304538
IITA-TMS-IBA9102324I9102324:250090766I9102324:250090766
TMEB117TMEB117:250253666TMEB117:250253666
TMEB1TMEB1:250253593TMEB1:250253593
IITA-TMS-IBA920326I920326:250090768I920326:250090768
IITA-TMS-IBA996012I996012:250300416I996012:250300416
IITA-TMS-IBA996016I996016:250090791I996016:250090791
IITA-TMS-IBA996017I996017:250300415I996017:250300415
IITA-TMS-IBA996069I996069:250300420I996069:250300420

There are 8149 genotyped-and-phenotyped clones!

BLUPs

These are the BLUPs combining data for each clone across trials/locations without genomic information, used as input for genomic prediction downstream.

blups<-readRDS(file=here::here("data","blups_forCrossVal.rds")) 
gidWithBLUPs<-blups %>% select(Trait,blups) %>% unnest(blups) %$% unique(GID)
rawdata %>% 
  select(observationUnitDbId,GID,any_of(blups$Trait)) %>% 
  pivot_longer(cols = any_of(blups$Trait), 
               names_to = "Trait", 
               values_to = "Value",values_drop_na = T) %>% 
  filter(GID %in% gidWithBLUPs) %>% 
  group_by(Trait) %>% 
  summarize(Nplots=n()) %>% 
  ungroup() %>% 
  left_join(blups %>% 
              mutate(Nclones=map_dbl(blups,~nrow(.)),
                     avgREL=map_dbl(blups,~mean(.$REL)),
                     Vg=map_dbl(varcomp,~.["GID!GID.var","component"]),
                     Ve=map_dbl(varcomp,~.["R!variance","component"]),
                     H2=Vg/(Vg+Ve)) %>% 
              select(-blups,-varcomp)) %>% 
  mutate(across(is.numeric,~round(.,3))) %>% arrange(desc(H2)) %>% 
  rmarkdown::paged_table()
ABCDEFGHIJ0123456789
Trait
<chr>
Nplots
<dbl>
Nclones
<dbl>
avgREL
<dbl>
Vg
<dbl>
Ve
<dbl>
H2
<dbl>
BCHROMO2631151670.98154.8891.8150.968
MCMDS9638578900.8830.6510.1550.808
PLTHT1758043370.8401391.744384.1590.784
logFYLD10996874640.7110.2620.2110.553
BRLVLS1622943730.6570.6530.5330.551
HI9208674160.6720.0090.0090.504
logRTNO11108974410.6660.1370.1440.488
BRNHT11914042100.577211.561253.2630.455
DM8432267720.6049.70814.0580.408
logTOPYLD9358975310.5970.1130.1650.407
logDYLD8090766710.5970.1480.2200.403
blups %>% 
  select(Trait,blups) %>% 
  unnest(blups) %>% 
  ggplot(.,aes(x=drgBLUP,fill=Trait)) + geom_histogram() + facet_wrap(~Trait, scales='free') + 
  theme_bw() + scale_fill_viridis_d() + theme(legend.position = 'none') + 
  labs(title = "Distribution of de-regressed BLUP Values")

blups %>% 
  select(Trait,blups) %>% 
  unnest(blups) %>% 
  ggplot(.,aes(x=Trait,y=REL,fill=Trait)) + geom_boxplot(notch=T) + #facet_wrap(~Trait, scales='free') + 
  theme_bw() + scale_fill_viridis_d() + 
  theme(axis.text.x = element_text(angle=90),
        legend.position = 'none') + 
  labs(title = "Distribution of BLUP Reliabilities")

# Marker density and distribution

library(tidyverse); library(magrittr);
snps<-readRDS(file=here::here("data","dosages_IITA_filtered_2021May13.rds"))
mrks<-colnames(snps) %>% 
  tibble(SNP_ID=.) %>% 
  separate(SNP_ID,c("Chr","Pos","Allele"),"_") %>% 
  mutate(Chr=as.integer(gsub("S","",Chr)),
         Pos=as.numeric(Pos))
mrks %>% 
  ggplot(.,aes(x=Pos,fill=as.character(Chr))) + geom_histogram() + 
  facet_wrap(~Chr,scales = 'free') + theme_bw() + 
  scale_fill_viridis_d() + theme(legend.position = 'none',
                                 axis.text.x = element_text(angle=90))

mrks %>% count(Chr) %>% rmarkdown::paged_table()
ABCDEFGHIJ0123456789
Chr
<int>
n
<int>
13468
22237
32282
41742
52053
61879
71185
82006
91691
101735
111915
121596
131510
142833
152019
161403
171673
181754

Pedigree

Summarize the pedigree and the verification results described here.

library(tidyverse); library(magrittr);
ped2check_genome<-readRDS(file=here::here("output","ped2check_genome.rds"))
ped2check_genome %<>% 
  select(IID1,IID2,Z0,Z1,Z2,PI_HAT)
ped2check<-read.table(file=here::here("output","ped2genos.txt"),
                      header = F, stringsAsFactors = F) %>% 
  rename(FullSampleName=V1,DamID=V2,SireID=V3)
ped2check %<>% 
  select(FullSampleName,DamID,SireID) %>% 
  inner_join(ped2check_genome %>% 
               rename(FullSampleName=IID1,DamID=IID2) %>% 
               bind_rows(ped2check_genome %>% 
                           rename(FullSampleName=IID2,DamID=IID1))) %>% 
  distinct %>% 
  mutate(FemaleParent=case_when(Z0<0.32 & Z1>0.67~"Confirm",
                                       SireID==DamID & PI_HAT>0.6 & Z0<0.3 & Z2>0.32~"Confirm",
                                       TRUE~"Reject")) %>% 
  select(-Z0,-Z1,-Z2,-PI_HAT) %>% 
  inner_join(ped2check_genome %>% 
               rename(FullSampleName=IID1,SireID=IID2) %>% 
               bind_rows(ped2check_genome %>% 
                           rename(FullSampleName=IID2,SireID=IID1))) %>% 
  distinct %>% 
  mutate(MaleParent=case_when(Z0<0.32 & Z1>0.67~"Confirm",
                                       SireID==DamID & PI_HAT>0.6 & Z0<0.3 & Z2>0.32~"Confirm",
                                       TRUE~"Reject")) %>% 
  select(-Z0,-Z1,-Z2,-PI_HAT)
rm(ped2check_genome)

ped2check %<>% 
  mutate(Cohort=NA,
         Cohort=ifelse(grepl("TMS18",FullSampleName,ignore.case = T),"TMS18",
                       ifelse(grepl("TMS15",FullSampleName,ignore.case = T),"TMS15",
                              ifelse(grepl("TMS14",FullSampleName,ignore.case = T),"TMS14",
                                     ifelse(grepl("TMS13|2013_",FullSampleName,ignore.case = T),"TMS13","GGetc")))))

Proportion of accessions with male, female or both parents in pedigree confirm-vs-rejected?

ped2check %>% 
  count(FemaleParent,MaleParent) %>% 
  mutate(Prop=round(n/sum(n),2))
  FemaleParent MaleParent    n Prop
1      Confirm    Confirm 4259 0.77
2      Confirm     Reject  563 0.10
3       Reject    Confirm  382 0.07
4       Reject     Reject  313 0.06

Proportion of accessions within each Cohort with pedigree records confirmed-vs-rejected?

ped2check %>% 
  count(Cohort,FemaleParent,MaleParent) %>% 
  spread(Cohort,n) %>% 
  mutate(across(is.numeric,~round(./sum(.),2))) %>% 
  rmarkdown::paged_table()
ABCDEFGHIJ0123456789
FemaleParent
<chr>
MaleParent
<chr>
GGetc
<dbl>
TMS13
<dbl>
TMS14
<dbl>
TMS15
<dbl>
TMS18
<dbl>
ConfirmConfirm0.690.780.870.700.66
ConfirmReject0.040.100.060.180.11
RejectConfirm0.120.040.070.090.14
RejectReject0.150.090.010.020.09

Use only fully-confirmed families / trios. Remove any without both parents confirmed.

ped<-read.table(here::here("output","verified_ped.txt"),
                header = T, stringsAsFactors = F) %>% 
  mutate(Cohort=NA,
         Cohort=ifelse(grepl("TMS18",FullSampleName,ignore.case = T),"TMS18",
                       ifelse(grepl("TMS15",FullSampleName,ignore.case = T),"TMS15",
                              ifelse(grepl("TMS14",FullSampleName,ignore.case = T),"TMS14",
                                     ifelse(grepl("TMS13|2013_",FullSampleName,ignore.case = T),"TMS13","GGetc")))))

Summary of family sizes

ped %>% 
  count(SireID,DamID) %$% summary(n)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   1.00    1.00    3.00    5.85    8.00   77.00 
ped %>% nrow(.) # 4259 pedigree entries
[1] 4259
ped %>% 
  count(Cohort,name = "Number of Verified Pedigree Entries")
  Cohort Number of Verified Pedigree Entries
1  GGetc                                  18
2  TMS13                                1786
3  TMS14                                1302
4  TMS15                                 589
5  TMS18                                 564
ped %>% 
  distinct(Cohort,SireID,DamID) %>% 
  count(Cohort,name = "Number of Families per Cohort")
  Cohort Number of Families per Cohort
1  GGetc                            16
2  TMS13                           120
3  TMS14                           233
4  TMS15                           197
5  TMS18                           164

730 families. Mean size 5.85, range 1-77.

Parent-wise Cross-validation

parentfolds<-readRDS(file=here::here("output","parentfolds.rds"))
summarized_parentfolds<-parentfolds %>% 
  mutate(Ntestparents=map_dbl(testparents,length),
         Ntrainset=map_dbl(trainset,length),
         Ntestset=map_dbl(testset,length),
         NcrossesToPredict=map_dbl(CrossesToPredict,nrow)) %>% 
  select(Repeat,Fold,starts_with("N"))
summarized_parentfolds %>% 
  rmarkdown::paged_table()
ABCDEFGHIJ0123456789
Repeat
<chr>
Fold
<chr>
Ntestparents
<dbl>
Ntrainset
<dbl>
Ntestset
<dbl>
NcrossesToPredict
<dbl>
Repeat1Fold15614662712237
Repeat1Fold25520602118218
Repeat1Fold35525801598164
Repeat1Fold45524791699165
Repeat1Fold55519612217195
Repeat2Fold15620132165212
Repeat2Fold25524121766168
Repeat2Fold35519252253195
Repeat2Fold45520532125174
Repeat2Fold55519122266213
summarized_parentfolds %>% summarize(across(is.numeric,median,.names = "median{.col}"))
# A tibble: 1 x 4
  medianNtestparents medianNtrainset medianNtestset medianNcrossesToPredict
               <dbl>           <dbl>          <dbl>                   <dbl>
1                 55            2053           2125                     195

Selection index weights

c(logFYLD=20,
  HI=10,
  DM=15,
  MCMDS=-10,
  logRTNO=12,
  logDYLD=20,
  logTOPYLD=15,
  PLTHT=10)
  logFYLD        HI        DM     MCMDS   logRTNO   logDYLD logTOPYLD     PLTHT 
       20        10        15       -10        12        20        15        10 

Prediction accuracy

  1. Check prediction accuracy: Evaluate prediction accuracy with cross-validation.

Selection Index Accuracy

Selection index weights

# SELECTION INDEX WEIGHTS
## from IYR+IK
## note that not ALL predicted traits are on index
SIwts<-c(logFYLD=20,
         HI=10,
         DM=15,
         MCMDS=-10,
         logRTNO=12,
         logDYLD=20,
         logTOPYLD=15,
         PLTHT=10) 
SIwts
  logFYLD        HI        DM     MCMDS   logRTNO   logDYLD logTOPYLD     PLTHT 
       20        10        15       -10        12        20        15        10 
library(ggdist)
accuracy_ad<-readRDS(here::here("output","cvAD_5rep5fold_predAccuracy.rds"))
accuracy_dirdom<-readRDS(here::here("output","cvDirDom_5rep5fold_predAccuracy.rds"))
accuracy<-accuracy_ad$meanPredAccuracy %>% 
  bind_rows(accuracy_dirdom$meanPredAccuracy) %>% 
  filter(Trait=="SELIND") %>% 
  mutate(VarComp=gsub("Mean","",predOf),
         predOf="Mean") %>% 
  bind_rows(accuracy_ad$varPredAccuracy %>% 
              bind_rows(accuracy_dirdom$varPredAccuracy) %>% 
              filter(Trait1=="SELIND") %>% 
              rename(Trait=Trait1) %>% 
              select(-Trait2) %>% 
              mutate(VarComp=gsub("Var","",predOf),
                     predOf="Var")) %>% 
  select(-predVSobs)

colors<-viridis::viridis(4)[1:2]
accuracy %>% 
  mutate(predOf=factor(predOf,levels=c("Mean","Var")),
         VarComp=factor(VarComp,levels=c("BV","TGV"))) %>% 
  ggplot(.,aes(x=VarComp,y=AccuracyEst,fill=VarComp)) +
  ggdist::stat_halfeye(adjust=0.5,.width = 0,fill='gray',width=0.75) +  
  geom_boxplot(width=0.12,notch = TRUE) +
  ggdist::stat_dots(side = "left",justification = 1.1,
                    binwidth = 0.03,dotsize=0.6) +
  theme_bw() + 
  scale_fill_manual(values = colors) + 
  geom_hline(yintercept = 0, color='black', size=0.9) +
  theme(axis.text.x = element_blank(),
        axis.title.x = element_blank(),
        strip.background = element_blank(),
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        axis.title = element_text(face='bold',color = 'black'),
        strip.text.x = element_text(face='bold',color='black',size=14),
        axis.text.y = element_text(face = 'bold',color='black'),
        legend.text = element_text(face='bold'),
        legend.position = 'bottom') +
  facet_grid(predOf~modelType,scales = 'free') + 
  #facet_wrap(~predOf+modelType,scales = 'free_y',nrow=1) + 
  labs(title="Selection Index Prediction Accuracy") + 
  coord_cartesian(xlim = c(1.2, NA))

Accuracy predicting cross-means

accuracy_ad$meanPredAccuracy %>% 
  bind_rows(accuracy_dirdom$meanPredAccuracy) %>% 
  select(-predVSobs) %>% 
  mutate(Trait=factor(Trait,levels=c("SELIND",blups$Trait)),
         predOf=factor(paste0(predOf,"_",modelType),levels=c("MeanBV_AD","MeanTGV_AD","MeanBV_DirDom","MeanTGV_DirDom"))) %>% 
  ggplot(.,aes(x=predOf,y=AccuracyEst,fill=predOf,color=modelType)) + 
  geom_boxplot(width=0.4,notch = TRUE, color='gray40') +
  ggdist::stat_dots(side = "left", justification = 1.3,
                    binwidth = 0.03,dotsize=0.5,layout="swarm") +
  scale_fill_manual(values = viridis::viridis(4)[1:4]) + 
  scale_color_manual(values = viridis::viridis(4)[1:4]) + 
  geom_hline(yintercept = 0, color='black', size=0.8) +
  facet_grid(.~Trait) + 
  labs(title="Accuracy predicting cross-means") + 
  theme_bw() + 
  theme(axis.text.x = element_blank(),
        axis.title.x = element_blank(),
        strip.background = element_blank(),
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        axis.text.y = element_text(face='bold'),
        strip.text.x = element_text(face='bold'),
        legend.position='bottom',
        legend.text = element_text(face='bold'),
        panel.spacing = unit(0.05, "lines"))

Accuracy predicting variance params

accuracy_ad$varPredAccuracy %>% 
  bind_rows(accuracy_dirdom$varPredAccuracy) %>% 
  select(-predVSobs) %>% 
  filter(Trait1==Trait2) %>% 
  mutate(Trait1=factor(Trait1,levels=c("SELIND",blups$Trait)),
         predOf=factor(paste0(predOf,"_",modelType),
                       levels=c("VarBV_AD","VarTGV_AD",
                                "VarBV_DirDom","VarTGV_DirDom"))) %>% 
  ggplot(.,aes(x=predOf,y=AccuracyEst,fill=predOf,color=modelType)) + 
  geom_boxplot(width=0.4,notch = TRUE,color='gray40') +
  ggdist::stat_dots(side = "left", justification = 1.3,layout='swarm',
                    binwidth = 0.03,dotsize=0.4) +
  scale_fill_manual(values = viridis::viridis(4)[1:4]) + 
  scale_color_manual(values = viridis::viridis(4)[1:4]) + 
  geom_hline(yintercept = 0, color='black', size=0.8) +
  facet_grid(.~Trait1) + 
  labs(title="Accuracy predicting cross-variances") + 
  theme_bw() + 
  theme(axis.text.x = element_blank(),
        axis.title.x = element_blank(),
        strip.background = element_blank(),
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        axis.text.y = element_text(face='bold'),
        strip.text.x = element_text(face='bold'),
        legend.position='bottom',
        legend.text = element_text(face='bold'),
        panel.spacing = unit(0.05, "lines"))

accuracy_ad$varPredAccuracy %>% 
  bind_rows(accuracy_dirdom$varPredAccuracy) %>% 
  select(-predVSobs) %>% 
  filter(Trait1!="SELIND",Trait2!="SELIND",
         Trait1!=Trait2) %>% 
  mutate(#Trait1=factor(Trait1,levels=c("SELIND",blups$Trait)),
         #Trait2=factor(Trait2,levels=c("SELIND",blups$Trait)),
         Trait1=factor(Trait1,levels=c(blups$Trait)),
         Trait2=factor(Trait2,levels=c(blups$Trait)),
         predOf=factor(paste0(predOf,"_",modelType),
                       levels=c("VarBV_AD","VarTGV_AD",
                                "VarBV_DirDom","VarTGV_DirDom"))) %>% 
  ggplot(.,aes(x=predOf,y=AccuracyEst,fill=predOf,color=modelType)) + 
  geom_boxplot(notch = TRUE) +
  scale_fill_manual(values = viridis::viridis(4)[1:4]) + 
  scale_color_manual(values = viridis::viridis(4)[1:4]) + 
  geom_hline(yintercept = 0, color='gray40', size=0.6) +
  facet_wrap(~Trait1+Trait2,nrow=5) + 
  labs(title="Accuracy predicting cross-covariances") + 
  theme_bw() + 
  theme(axis.text.x = element_blank(),
        axis.title.x = element_blank(),
        strip.background = element_blank(),
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        axis.text.y = element_text(face='bold'),
        strip.text.x = element_text(size=8),
        strip.text.y = element_text(size=8,angle = 0),
        legend.position='bottom',
        legend.text = element_text(face='bold'),
        panel.spacing = unit(0.05, "lines"))

[TO REDO] Accuracy based only on large families

What if we only compute accuracy with families having >10 or >20 members?

# library(tidyverse); library(magrittr)
# cvvars<-readRDS(here::here("output","cvVarPredAccuracyAD.rds"))
# 
# big_acc<-cvvars %>% 
#   mutate(AccuracyEst_n10=map_dbl(predVSobs,function(predVSobs){
#     z<-predVSobs %>% filter(famSize>=10)
#     out<-psych::cor.wt(z[,c("predVar","obsVar")],
#                        w = z$famSize) %$% r[1,2] %>%
#       round(.,3)
#     return(out) }),
#     AccuracyEst_n20=map_dbl(predVSobs,function(predVSobs){
#       z<-predVSobs %>% filter(famSize>=20)
#       out<-psych::cor.wt(z[,c("predVar","obsVar")],
#                          w = z$famSize) %$% r[1,2] %>%
#         round(.,3)
#       return(out) }))
# 
# big_acc %<>% 
#   mutate(Trait1=factor(Trait1,levels=c("SELIND",blups$Trait)),
#          Trait2=factor(Trait2,levels=c("SELIND",blups$Trait)),
#          predOf=factor(predOf,levels=c("VarBV","VarTGV")))
# 
# big_acc %>% 
#   filter(Trait1==Trait2,predOf=="VarBV") %>%
#   select(-predVSobs) %>% 
#   pivot_longer(cols = contains("Accuracy"), names_to = "FamilySizeForValidation",values_to = "AccuracyEst") %>% 
#   ggplot(.,aes(x=predOf,y=AccuracyEst,fill=FamilySizeForValidation, color=predOf)) + 
#   geom_boxplot(width=0.4,notch = TRUE,color='gray40') +
#   scale_fill_manual(values = viridis::viridis(4)[1:3]) + 
#   #scale_color_manual(values = viridis::viridis(4)[1:3]) + 
#   geom_hline(yintercept = 0, color='black', size=0.8) +
#   facet_grid(predOf~Trait1) + 
#   labs(title="Accuracy predicting cross-variances in bigger famiilies only?") + 
#   theme_bw() + 
#   theme(axis.text.x = element_blank(),
#         axis.title.x = element_blank(),
#         strip.background = element_blank(),
#         panel.grid.major = element_blank(),
#         panel.grid.minor = element_blank(),
#         axis.text.y = element_text(face='bold'),
#         strip.text.x = element_text(face='bold'),
#         legend.position='bottom',
#         legend.text = element_text(face='bold'),
#         panel.spacing = unit(0.05, "lines"))

[RUNNING] Genomic Mate Selection

Placeholder for summaries of the full-model predictions of cross means and variances to-be-used for selection.

Genetic Gain Estimates

# GBLUPs
### Two models AD and DirDom
#gpreds_ad<-readRDS(file = here::here("output","genomicPredictions_ModelAD.rds"))
gpreds_dirdom<-readRDS(file = here::here("output","genomicPredictions_ModelDirDom.rds"))
si_getgvs<-gpreds_dirdom$gblups[[1]] %>% 
#si_getgvs<-gpreds_ad$gblups[[1]] %>% 
  filter(predOf=="GETGV") %>% 
  select(GID,SELIND)

## IITA Germplasm Ages
ggcycletime<-readxl::read_xls(here::here("data","PedigreeGeneticGainCycleTime_aafolabi_01122020.xls")) %>% 
  mutate(Year_Accession=as.numeric(Year_Accession))

# Need germplasmName field from raw trial data to match GEBV and cycle time
rawdata<-readRDS(here::here("output","IITA_ExptDesignsDetected_2021May10.rds"))
si_getgvs %<>% 
  left_join(rawdata %>% 
              distinct(germplasmName,GID)) %>% 
  group_by(GID) %>% 
  slice(1) %>% 
  ungroup()
# table(ggcycletime$Accession %in% si_getgvs$germplasmName)
# FALSE  TRUE 
#   193   614 

si_getgvs %<>% 
  left_join(.,ggcycletime %>% 
              rename(germplasmName=Accession) %>% 
              mutate(Year_Accession=as.numeric(Year_Accession))) %>% 
  mutate(Year_Accession=case_when(grepl("2013_|TMS13",germplasmName)~2013,
                                  grepl("TMS14",germplasmName)~2014,
                                  grepl("TMS15",germplasmName)~2015,
                                  grepl("TMS18",germplasmName)~2018,
                                  !grepl("2013_|TMS13|TMS14|TMS15|TMS18",germplasmName)~Year_Accession))

# Declare the "eras" as PreGS\<2012 and GS\>=2013.
si_getgvs %<>% 
  filter(Year_Accession>2012 | Year_Accession<2005)
si_getgvs %<>% 
  mutate(GeneticGroup=ifelse(Year_Accession>=2013,"GS","PreGS"))

Show rate of genetic gain - getgv vs. accession age

# , fig.height=10, fig.width=12
si_getgvs %>% 
  select(GeneticGroup,GID,Year_Accession,SELIND) %>% 
  ggplot(.,aes(x=Year_Accession,y=SELIND,color=GeneticGroup)) + 
  geom_point(size=1.25) + geom_smooth(method=lm, se=TRUE, size=1.5) + 
  # facet_wrap(~Trait,scales='free_y', ncol=2) + 
  theme_bw() +
  theme(axis.text = element_text(face = 'bold',angle = 0, size=14),
        axis.title = element_text(face = 'bold',size=16),
        strip.background.x = element_blank(),
        strip.text = element_text(face='bold',size=18)) + 
  scale_color_viridis_d() + 
  labs(title = "Selection Index GETGV vs. Accession Age by 'era' [GS vs. PreGS]",
       subtitle = "SI GETGV from modelType='DirDom'")

Barplot of mean GEBV vs. Cycle

si_gebvs<-gpreds_dirdom$gblups[[1]] %>% 
  filter(predOf=="GEBV") %>% 
  select(GID,SELIND) %>% 
  mutate(GeneticGroup=case_when(grepl("2013_|TMS13",GID)~"C1",
                                  grepl("TMS14",GID)~"C2",
                                  grepl("TMS15",GID)~"C3",
                                  grepl("TMS18",GID)~"C4",
                                  !grepl("2013_|TMS13|TMS14|TMS15|TMS18",GID)~"PreGS"),
         GeneticGroup=factor(GeneticGroup,levels = c("PreGS","C1","C2","C3","C4")))
si_gebvs %>% 
  group_by(GeneticGroup) %>% 
  summarize(meanGEBV=mean(SELIND),
            stdErr=sd(SELIND)/sqrt(n()),
            upperSE=meanGEBV+stdErr,
            lowerSE=meanGEBV-stdErr) %>% 
  ggplot(.,aes(x=GeneticGroup,y=meanGEBV,fill=GeneticGroup)) + 
  geom_bar(stat = 'identity', color='gray60', size=1.25) + 
  geom_linerange(aes(ymax=upperSE,
                     ymin=lowerSE), color='gray60', size=1.25) + 
  #facet_wrap(~Trait,scales='free_y', ncol=1) + 
  theme_bw() +
  geom_hline(yintercept = 0, size=1.15, color='black') + 
  theme(axis.text.x = element_text(face = 'bold',angle = 0, size=12),
        axis.title.y = element_text(face = 'bold',size=14),
        legend.position = 'none',
        strip.background.x = element_blank(),
        strip.text = element_text(face='bold',size=14)) + 
  scale_fill_viridis_d() + 
  labs(x=NULL,y="Mean GEBVs",
       title="Mean +/- Std. Error Selection Index GEBV by Cycle")


sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ggdist_2.4.1    ragg_1.1.3      magrittr_2.0.1  forcats_0.5.1  
 [5] stringr_1.4.0   dplyr_1.0.7     purrr_0.3.4     readr_1.4.0    
 [9] tidyr_1.1.3     tibble_3.1.2    ggplot2_3.3.5   tidyverse_1.3.1
[13] workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] viridis_0.6.1        httr_1.4.2           sass_0.4.0          
 [4] jsonlite_1.7.2       viridisLite_0.4.0    splines_4.1.0       
 [7] here_1.0.1           modelr_0.1.8         bslib_0.2.5.1       
[10] assertthat_0.2.1     distributional_0.2.2 highr_0.9           
[13] cellranger_1.1.0     yaml_2.2.1           lattice_0.20-44     
[16] pillar_1.6.1         backports_1.2.1      glue_1.4.2          
[19] digest_0.6.27        promises_1.2.0.1     rvest_1.0.0         
[22] colorspace_2.0-2     Matrix_1.3-4         htmltools_0.5.1.1   
[25] httpuv_1.6.1         pkgconfig_2.0.3      broom_0.7.8         
[28] haven_2.4.1          scales_1.1.1         whisker_0.4         
[31] later_1.2.0          git2r_0.28.0         mgcv_1.8-36         
[34] generics_0.1.0       farver_2.1.0         ellipsis_0.3.2      
[37] withr_2.4.2          cli_3.0.0            crayon_1.4.1        
[40] readxl_1.3.1         evaluate_0.14        fs_1.5.0            
[43] fansi_0.5.0          nlme_3.1-152         xml2_1.3.2          
[46] beeswarm_0.4.0       textshaping_0.3.5    tools_4.1.0         
[49] hms_1.1.0            lifecycle_1.0.0      munsell_0.5.0       
[52] reprex_2.0.0         compiler_4.1.0       jquerylib_0.1.4     
[55] systemfonts_1.0.2    rlang_0.4.11         grid_4.1.0          
[58] rstudioapi_0.13      labeling_0.4.2       rmarkdown_2.9       
[61] gtable_0.3.0         DBI_1.1.1            R6_2.5.0            
[64] gridExtra_2.3        lubridate_1.7.10     knitr_1.33          
[67] utf8_1.2.1           rprojroot_2.0.2      stringi_1.6.2       
[70] Rcpp_1.0.7           vctrs_0.3.8          dbplyr_2.1.1        
[73] tidyselect_1.1.1     xfun_0.24