Last updated: 2020-08-05

Checks: 6 1

Knit directory: gene_level_fine_mapping/

This reproducible R Markdown analysis was created with workflowr (version 1.6.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200622) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/Users/nicholeyang/Desktop/gene_level_fine_mapping/data/training.RData data/training.RData
/Users/nicholeyang/Desktop/gene_level_fine_mapping/data/train_add_hic.RData data/train_add_hic.RData

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version e85eacc. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store

Untracked files:
    Untracked:  data/hic_eqtl.RData
    Untracked:  data/train_add_hic.RData

Unstaged changes:
    Modified:   analysis/model_hic.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/add_hic_feature.Rmd) and HTML (docs/add_hic_feature.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd e85eacc yunqiyang0215 2020-08-05 wflow_publish(“analysis/add_hic_feature.Rmd”)
html d74427c yunqiyang0215 2020-08-05 Build site.
Rmd d0ad5a2 yunqiyang0215 2020-08-05 wflow_publish(“analysis/add_hic_feature.Rmd”)

prepare for HiC feature

load("/Users/nicholeyang/Desktop/Rotation2/data/hic_eqtl.RData")
head(hic_eqtl)
        chr     start                loc_38map baitChr baitStart   baitEnd
df_snps   1 100643730 chr1:100178174-100178174       1 100713369 100722257
X2        1 101361178 chr1:100895622-100895622       1  87379937  87381019
X2.1      1 101361178 chr1:100895622-100895622       1  95536274  95538845
X2.2      1 101361178 chr1:100895622-100895622       1  98385116  98389489
X2.3      1 101361178 chr1:100895622-100895622       1 100231938 100238252
X2.4      1 101361178 chr1:100895622-100895622       1 100249523 100251737
        baitID          baitName oeChr   oeStart     oeEnd  oeID        oeName
df_snps  27326 DBT;RP11-305E17.4     1 100634352 100646989 27306        LRRC39
X2       23051      HS2ST1;SEP15     1 101360898 101363055 27516 EXTL2;SLC30A7
X2.1     25596             ALG14     1 101360898 101363055 27516 EXTL2;SLC30A7
X2.2     26553              DPYD     1 101360898 101363055 27516 EXTL2;SLC30A7
X2.3     27180             FRRS1     1 101360898 101363055 27516 EXTL2;SLC30A7
X2.4     27182          RNU4-75P     1 101360898 101363055 27516 EXTL2;SLC30A7
            dist              Mon              Mac0             Mac1
df_snps   -77142 1.34843055599415  1.78921772839366 1.99634719222292
X2      13981499                0                 0                0
X2.1     5824417                0 0.465695547029591                0
X2.2     2974674                0 0.926519775296238 2.52224939360564
X2.3     1126882 2.89316496564785  10.7618511038685  6.6110787600356
X2.4     1111347 2.24744093217506  9.70507665907856 5.92291542638399
                    Mac2              Neu               MK               EP
df_snps 3.84121648347469  6.6419009785134 3.04135339426089 1.34115496917577
X2                     0                0                0                0
X2.1                   0                0                0                0
X2.2    1.84838858472344                0                0                0
X2.3    8.87116886614274                0 7.36660394659741                0
X2.4    5.21110811135408 3.27608835168057 5.65619485450452 1.37318289845971
                     Ery              FoeT             nCD4              tCD4
df_snps 5.67015582143414  3.05676235556647 2.93116627100789  2.82620900824891
X2                     0  5.98672074531884 7.64738754701126   3.7619497300554
X2.1                   0                 0 1.13980263210717                 0
X2.2                   0  7.01735672371564 7.02105829238459  5.33996347469841
X2.3    9.60222489674592  1.19872663945268 2.40955754341805 0.883580083863637
X2.4    6.76819441601615 0.229785161823062 6.13067570692578  8.16139741483703
                     aCD4            naCD4             nCD8             tCD8
df_snps  3.01147313782106 3.19101824842048 2.20595105037866 2.19621256112425
X2       6.72053163467254 9.91922157469345                0  7.5966163534812
X2.1    0.394818585888307 2.69464062510513 5.03898592801291 3.93778263870396
X2.2     3.47660053737806 7.32439411893241 3.95130982543128 3.52920996524329
X2.3     1.19474781222933  1.4353267284434 2.03706000977369 2.20463021502093
X2.4     4.97039210529628 3.84760946495465 5.48068559290623  4.8540590419425
                       nB               tB clusterID clusterPostProb
df_snps  4.13498913605023 5.24561817997031         7           0.815
X2                      0                0        10           0.999
X2.1                    0                0        10           0.912
X2.2    0.350167329501555 1.75640180174979        10           0.812
X2.3     2.30542223744791 3.47593895897212        32           0.854
X2.4     9.79918042442615 4.92540990098449        21           0.866
## remove NA genes
hic_eqtl2 = hic_eqtl[!is.na(hic_eqtl$baitName), ]

## split those with several bait genes 
bait_gene = strsplit(as.character(hic_eqtl2$baitName), ';')
ngenes = lapply(bait_gene, function(x) length(x))

index_list = c()
for(i in 1:dim(hic_eqtl2)[1]){
  index = rep(i, ngenes[[i]])
  index_list = c(index_list, index)
}

hic_eqtl3 = hic_eqtl2[index_list, ]
hic_eqtl3$bait_gene = unlist(bait_gene)

load training data

load("/Users/nicholeyang/Desktop/gene_level_fine_mapping/data/training.RData")

## remove NAs
dat = rbind(train_pos_all, train_neg_all)
NAs = apply(dat, 1, function(x) sum(is.na(x)))
dat = dat[NAs == 0, ]
## add variable snp_loc38 to training data 
var_loc = strsplit(as.character(dat$variant_id), '_')
dat$snp_loc38 =  paste(unlist(lapply(var_loc, function(x) x[1])), unlist(lapply(var_loc, function(x) x[2])), sep = ':')

## add variable snp_loc38 to hic_eqtl3
var_loc = strsplit(as.character(hic_eqtl3$loc_38map), '-')
hic_eqtl3$snp_loc38 = unlist(lapply(var_loc, function(x) x[1]))

restrict hic_eqtl to coding genes

coding_gene_list = read.table('/Users/nicholeyang/Desktop/Rotation2/data/coding_gene_list.txt', header = TRUE)

coding_gene_list$gene_name = coding_gene_list$Approved_symbol
hic_eqtl3$gene_name = hic_eqtl3$bait_gene
hic_eqtl4 = merge(coding_gene_list, hic_eqtl3, by = 'gene_name', all = FALSE)
dim(hic_eqtl4)[1]
[1] 18776

add HiC annotations to eqtl gene-snp pairs

index_in_hic = c()

for(i in 1:dim(dat)[1]){
  index = which(dat[i, ]$gene_name == hic_eqtl4$gene_name & dat[i, ]$snp_loc38 == hic_eqtl4$snp_loc38)
  index_in_hic = c(index_in_hic, index)
}

length(index_in_hic)
[1] 9452
train_hic = hic_eqtl4[index_in_hic, c("gene_name", "Mon", "Mac0", "Mac1",  "Mac2", "Neu",
                                         "MK", "EP", "Ery", "FoeT", "nCD4", "tCD4", "aCD4",          
                                         "naCD4", "nCD8", "tCD8", "nB", "tB","snp_loc38")]

dat_add_hic = merge(dat, train_hic, by = c('gene_name', 'snp_loc38'), all = TRUE)
## check NAs
Nas = apply(dat_add_hic, 2, function(x) sum(is.na(x)))
Nas
      gene_name       snp_loc38      variant_id            UTR5            UTR3 
              0               0               0               0               0 
           exon          intron        upstream tss_dist_to_snp               y 
              0               0               0               0               0 
            Mon            Mac0            Mac1            Mac2             Neu 
          57448           57448           57448           57448           57448 
             MK              EP             Ery            FoeT            nCD4 
          57448           57448           57448           57448           57448 
           tCD4            aCD4           naCD4            nCD8            tCD8 
          57448           57448           57448           57448           57448 
             nB              tB 
          57448           57448 
## replace NAs with 0
dat_add_hic[is.na(dat_add_hic)] <- 0
## binary the hic features
cols = c("Mon", "Mac0", "Mac1",  "Mac2", "Neu", "MK", "EP", "Ery", "FoeT",
         "nCD4", "tCD4", "aCD4", "naCD4", "nCD8", "tCD8", "nB", "tB")


for( i in 1:length(cols)){
  dat_add_hic[, cols[i]] = ifelse(as.numeric(as.character(dat_add_hic[, cols[i]])) >5, 1, 0)
}

save(dat_add_hic, file = '/Users/nicholeyang/Desktop/gene_level_fine_mapping/data/train_add_hic.RData')

sessionInfo()
R version 3.6.3 (2020-02-29)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Catalina 10.15.5

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] workflowr_1.6.1

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.4      rprojroot_1.3-2 digest_0.6.25   later_1.0.0    
 [5] R6_2.4.1        backports_1.1.5 git2r_0.26.1    magrittr_1.5   
 [9] evaluate_0.14   highr_0.8       stringi_1.4.6   rlang_0.4.5    
[13] fs_1.3.2        promises_1.1.0  whisker_0.4     rmarkdown_2.1  
[17] tools_3.6.3     stringr_1.4.0   glue_1.3.2      httpuv_1.5.2   
[21] xfun_0.12       yaml_2.2.1      compiler_3.6.3  htmltools_0.4.0
[25] knitr_1.28