• Description:
    • Region 1
    • Region 2

Last updated: 2024-06-21

Checks: 7 0

Knit directory: survival-data-analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240324) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 87b8057. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Unstaged changes:
    Deleted:    analysis/logistic_gwas_asthma.Rmd
    Deleted:    analysis/susie_asthma_result.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/susie_asthma_result2.Rmd) and HTML (docs/susie_asthma_result2.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 87b8057 yunqiyang0215 2024-06-21 wflow_publish("analysis/susie_asthma_result2.Rmd")
html aa454ea yunqiyang0215 2024-06-21 Build site.
Rmd 5aa21af yunqiyang0215 2024-06-21 wflow_publish("analysis/susie_asthma_result2.Rmd")
html 73f91ce yunqiyang0215 2024-06-20 Build site.
Rmd ed3b6e2 yunqiyang0215 2024-06-20 wflow_publish("analysis/susie_asthma_result2.Rmd")
html a4d10d1 yunqiyang0215 2024-06-20 Build site.
Rmd 706dd10 yunqiyang0215 2024-06-20 wflow_publish("analysis/susie_asthma_result2.Rmd")

Description:

Coxph Susie result on all asthma/ AOA/ COA in UKBiobank.

library(survival)
library(susieR)
devtools::load_all("/Users/nicholeyang/Downloads/logisticsusie")
ℹ Loading logisticsusie

Region 1

Marginal significant signals for COA, weak signals for AOA.

rs11071559_T was the one with smallest pvalue in all asthma, and PIP = 0.24. Carole’s paper also reported this one as the top signal. But in AOA, it’s not the one with smallest pval, the pip is a lot smaller.

1. All asthma cases

region = "chr15_59000001_63400000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/all/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/all_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]
print(res[[3]])
     user    system   elapsed 
48021.738 27994.163  4110.945 
pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)
pip.sorted = sort(pip, decreasing = TRUE)
pip.sorted[1:10]
 [1] 0.24346967 0.10867456 0.10424352 0.10165664 0.08854406 0.06504377
 [7] 0.05878656 0.04595972 0.04407223 0.04344761
class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
$cs$L1
 [1] 428 438 442 444 446 453 454 455 460 478 480 482 485 490 492 497 498 499 501


$purity
   min.abs.corr mean.abs.corr median.abs.corr
L1    0.7701707     0.9518411        0.965287

$cs_index
[1] 1

$coverage
[1] 0.9584117

$requested_coverage
[1] 0.95
snps1 = colnames(X)[cs$cs$L1]
colors <- ifelse(rownames(gwas) %in% snps1, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.8, pch = 20, main = "CS 1")

Version Author Date
a4d10d1 yunqiyang0215 2024-06-20
cbind(gwas[rownames(gwas) %in% snps1, ], pip[sort(cs$cs$L1)])
                   MAF missing.rate  p.value.spa p.value.norm      Stat
rs7183955_C  0.1857994            0 2.047135e-12 1.965395e-12 -686.9818
rs922783_G   0.1348981            0 7.063027e-12 6.654735e-12 -589.8232
rs12900122_T 0.1334614            0 2.805769e-12 2.621221e-12 -598.6492
rs12903966_T 0.1334992            0 2.479238e-12 2.313825e-12 -600.2511
rs16943087_G 0.1333576            0 4.033002e-12 3.778604e-12 -594.3751
rs2279294_C  0.1335081            0 1.268415e-11 1.199169e-11 -581.5727
rs2279293_G  0.1333651            0 1.466795e-11 1.388085e-11 -579.6246
rs2279292_C  0.1345950            0 5.626978e-12 5.290515e-12 -593.7446
rs8025689_C  0.1352865            0 8.350735e-12 7.879322e-12 -590.3153
rs12905602_A 0.1333781            0 7.234467e-12 6.809929e-12 -588.6392
rs11633029_C 0.1349144            0 1.688390e-11 1.601014e-11 -580.5839
rs11637671_G 0.1349347            0 1.629390e-11 1.544692e-11 -581.0378
rs11639084_T 0.1321305            0 1.409666e-11 1.332602e-11 -577.8021
rs10519067_A 0.1268612            0 2.796316e-12 2.598234e-12 -588.6569
rs10519068_A 0.1281122            0 1.097777e-12 1.012287e-12 -601.5405
rs11071557_C 0.1300621            0 1.018211e-12 9.399860e-13 -606.1218
rs34753162_C 0.1300892            0 9.385815e-13 8.658258e-13 -607.0330
rs34986765_C 0.1298710            0 1.199225e-12 1.108639e-12 -603.5777
rs11071559_T 0.1282230            0 4.231213e-13 3.864963e-13 -613.6394
                  Var         z           
rs7183955_C  9530.716 -7.036917 0.02401601
rs922783_G   7382.065 -6.864880 0.02646692
rs12900122_T 7320.864 -6.996668 0.05878656
rs12903966_T 7323.492 -7.014131 0.06504377
rs16943087_G 7324.006 -6.945224 0.04407223
rs2279294_C  7357.135 -6.780312 0.01930962
rs2279293_G  7353.770 -6.759145 0.01772081
rs2279292_C  7409.842 -6.897555 0.03527074
rs8025689_C  7446.700 -6.840725 0.02459909
rs12905602_A 7359.514 -6.861588 0.02795568
rs11633029_C 7423.555 -6.738435 0.01539183
rs11637671_G 7423.697 -6.743638 0.01567289
rs11639084_T 7294.842 -6.765053 0.01741284
rs10519067_A 7076.016 -6.997902 0.04595972
rs10519068_A 7120.226 -7.128826 0.10424352
rs11071557_C 7208.462 -7.139020 0.10165664
rs34753162_C 7207.339 -7.150309 0.10867456
rs34986765_C 7193.795 -7.116299 0.08854406
rs11071559_T 7143.786 -7.260208 0.24346967
rm(res, gwas, X, fit)

2. COA

region = "chr15_59000001_63400000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/coa/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/coa_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]

pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)

class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
$cs$L1
 [1] 399 402 404 412 413 414 418 420 421 422 427 438 442 444 446 453 454 455 460
[20] 478 480 482 485 490 492 497 498 499 501


$purity
   min.abs.corr mean.abs.corr median.abs.corr
L1    0.9257579     0.9692791       0.9758275

$cs_index
[1] 1

$coverage
[1] 0.9594382

$requested_coverage
[1] 0.95
snps1 = colnames(X)[cs$cs$L1]
colors <- ifelse(rownames(gwas) %in% snps1, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.5, pch = 20, main = "CS 1")

Version Author Date
a4d10d1 yunqiyang0215 2024-06-20
cbind(gwas[rownames(gwas) %in% snps1, ], pip[sort(cs$cs$L1)])
                   MAF missing.rate  p.value.spa p.value.norm      Stat
rs1351544_T  0.1341295            0 4.461386e-10 3.713514e-10 -269.0891
rs1817479_C  0.1344601            0 3.808552e-10 3.158273e-10 -270.4024
rs8025324_A  0.1344176            0 3.725567e-10 3.087450e-10 -270.5693
rs16943064_A 0.1364784            0 5.377680e-10 4.518186e-10 -269.8478
rs9920526_T  0.1343697            0 3.189260e-10 2.631108e-10 -270.7226
rs9920610_C  0.1348054            0 4.116391e-10 3.422020e-10 -269.6961
rs9920560_A  0.1338591            0 5.835716e-10 4.889988e-10 -267.0437
rs9920592_T  0.1339444            0 5.579596e-10 4.670002e-10 -267.6067
rs9920593_T  0.1339534            0 5.553709e-10 4.647776e-10 -267.6369
rs1020730_T  0.1339552            0 5.392532e-10 4.509357e-10 -267.8550
rs7162065_A  0.1339407            0 4.841433e-10 4.036654e-10 -268.7056
rs922783_G   0.1351647            0 6.584186e-11 5.189163e-11 -283.4299
rs12900122_T 0.1337288            0 8.097954e-11 6.399853e-11 -280.9145
rs12903966_T 0.1337666            0 7.256387e-11 5.715275e-11 -281.6921
rs16943087_G 0.1336174            0 2.102903e-10 1.710490e-10 -274.5713
rs2279294_C  0.1337616            0 1.231272e-10 9.858842e-11 -278.7902
rs2279293_G  0.1336176            0 1.649137e-10 1.331822e-10 -276.7600
rs2279292_C  0.1348538            0 1.395559e-10 1.124347e-10 -278.9279
rs8025689_C  0.1355442            0 1.067680e-10 8.547625e-11 -281.4096
rs12905602_A 0.1336304            0 4.023675e-10 3.334537e-10 -270.7834
rs11633029_C 0.1351697            0 5.155685e-10 4.315266e-10 -270.2153
rs11637671_G 0.1351902            0 5.001905e-10 4.183294e-10 -270.4283
rs11639084_T 0.1323729            0 3.352193e-10 2.756701e-10 -270.8541
rs10519067_A 0.1271050            0 1.167764e-10 9.181477e-11 -273.8719
rs10519068_A 0.1283646            0 1.319142e-10 1.044645e-10 -273.9002
rs11071557_C 0.1303221            0 1.019793e-10 8.049745e-11 -277.2735
rs34753162_C 0.1303492            0 1.012173e-10 7.988084e-11 -277.3011
rs34986765_C 0.1301288            0 8.559017e-11 6.714989e-11 -278.1494
rs11071559_T 0.1284794            0 9.641085e-11 7.556718e-11 -276.4440
                  Var         z           
rs1351544_T  1844.440 -6.265617 0.02106368
rs1817479_C  1847.604 -6.290803 0.02338094
rs8025324_A  1847.817 -6.294323 0.02372920
rs16943064_A 1873.125 -6.234986 0.01829921
rs9920526_T  1835.440 -6.319088 0.02661092
rs9920610_C  1845.268 -6.278342 0.02221628
rs9920560_A  1841.711 -6.222595 0.01785386
rs9920592_T  1845.204 -6.229810 0.01827960
rs9920593_T  1845.178 -6.230558 0.01833191
rs1020730_T  1845.380 -6.235292 0.01864945
rs7162065_A  1846.851 -6.252604 0.01989128
rs922783_G   1863.667 -6.565405 0.09146328
rs12900122_T 1848.325 -6.534087 0.07795816
rs12903966_T 1848.987 -6.551001 0.08590416
rs16943087_G 1849.039 -6.385311 0.03510412
rs2279294_C  1857.237 -6.469100 0.05450854
rs2279293_G  1856.368 -6.423493 0.04278518
rs2279292_C  1870.557 -6.449210 0.04876977
rs8025689_C  1879.766 -6.490633 0.06000053
rs12905602_A 1857.793 -6.282368 0.02189398
rs11633029_C 1873.906 -6.242175 0.01838518
rs11637671_G 1873.945 -6.247031 0.01872130
rs11639084_T 1841.423 -6.311878 0.02482659
rs10519067_A 1786.345 -6.479848 0.05514732
rs10519068_A 1797.518 -6.460345 0.04934584
rs11071557_C 1819.845 -6.499668 0.05895974
rs34753162_C 1819.559 -6.500825 0.05941099
rs34986765_C 1816.117 -6.526889 0.06868704
rs11071559_T 1803.695 -6.509170 0.06395982
rm(res, gwas, X, fit)

3. AOA

region = "chr15_59000001_63400000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/aoa/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/aoa_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]

pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)

class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
NULL

$coverage
NULL

$requested_coverage
[1] 0.95
rm(res, gwas, X, fit)

Region 2

Very significant signals for COA, marginal significant signals for AOA.

All asthma has a very weird CS. One All asthma CS overlap with COA CS. AOA CS has no overlap with other CSs.

1. All asthma cases

region = "chr2_102100001_105300000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/all/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/all_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]
print(res[[3]])
     user    system   elapsed 
370760.90 210483.81  30824.19 
pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)
pip.sorted = sort(pip, decreasing = TRUE)
pip.sorted[1:10]
 [1] 0.45753680 0.05677487 0.05635246 0.05510944 0.05506850 0.05371545
 [7] 0.04598294 0.04059181 0.03899255 0.03087550
class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
$cs$L2
 [1] 2205 2210 2212 2213 2214 2216 2220 2223 2224 2226 2233 2237 2238 2240 2241
[16] 2247 2248 2250 2251 2254 2255 2256 2257 2258 2260 2262 2264 2265 2266 2270
[31] 2273 2274 2276 2277 2279 2281 2282 2283 2287 2292 2295 2296 2299 2301 2302
[46] 2306 2307 2309 2311 2317 2328 2329 2330 2331 2332 2333 2336 2342 2344 2350
[61] 2352

$cs$L1
 [1] 2261 2267 2275 2280 2284 2285 2300 2304 2314 2323 2324 2362 2365 2367 2368
[16] 2369 2375 2384 2409


$purity
   min.abs.corr mean.abs.corr median.abs.corr
L2    0.9919537     0.9983229       0.9987347
L1    0.9862647     0.9966765       0.9973417

$cs_index
[1] 2 1

$coverage
[1] 0.9524084 0.9600456

$requested_coverage
[1] 0.95
par(mfrow = c(1,2))
snps1 = colnames(X)[cs$cs$L1]
colors <- ifelse(rownames(gwas) %in% snps1, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.8, pch = 20, main = "CS 1")

snps2 = colnames(X)[cs$cs$L2]
colors <- ifelse(rownames(gwas) %in% snps2, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.8, pch = 20, main = "CS 2")

Version Author Date
aa454ea yunqiyang0215 2024-06-21
cbind(gwas[rownames(gwas) %in% snps1, ], pip[sort(cs$cs$L1)])
                   MAF missing.rate  p.value.spa p.value.norm      Stat
rs72823635_C 0.1380777            0 9.576229e-41 1.324452e-41 -1176.896
rs950881_T   0.1380726            0 9.748399e-41 1.349239e-41 -1176.738
rs10179458_T 0.1381013            0 7.403775e-41 1.012584e-41 -1178.446
rs72823641_A 0.1373666            0 4.732089e-42 5.654617e-43 -1193.554
rs10189154_T 0.1380466            0 6.148579e-41 8.334263e-42 -1179.481
rs10189526_T 0.1380464            0 6.114220e-41 8.285568e-42 -1179.512
rs11679893_A 0.1380527            0 6.375127e-41 8.656649e-42 -1179.217
rs10865050_A 0.1380920            0 5.368975e-41 7.237633e-42 -1180.414
rs12053429_T 0.1380637            0 6.694631e-41 9.108477e-42 -1178.781
rs59185885_G 0.1353869            0 2.241854e-41 2.845097e-42 -1167.877
rs58815545_T 0.1380667            0 6.716752e-41 9.140149e-42 -1178.782
rs3771180_T  0.1381264            0 5.608771e-41 7.588367e-42 -1180.484
rs72823646_A 0.1380350            0 3.541638e-41 4.678987e-42 -1183.517
rs13431828_T 0.1380081            0 3.139351e-41 4.123458e-42 -1184.197
rs13408569_C 0.1377062            0 2.707921e-41 3.529341e-42 -1182.912
rs13408661_A 0.1379078            0 2.726747e-41 3.557209e-42 -1184.521
rs10173081_T 0.1380032            0 2.770821e-41 3.618302e-42 -1184.931
rs3771175_A  0.1377430            0 5.047224e-41 6.738070e-42 -1180.195
rs10197862_G 0.1383215            0 5.426446e-41 7.337032e-42 -1181.441
                  Var         z           
rs72823635_C 7586.161 -13.51223 0.01274015
rs950881_T   7585.660 -13.51087 0.01250895
rs10179458_T 7583.970 -13.53198 0.01756912
rs72823641_A 7543.225 -13.74243 0.45753680
rs10189154_T 7581.257 -13.54628 0.02173272
rs10189526_T 7581.182 -13.54672 0.02188418
rs11679893_A 7580.990 -13.54350 0.02098567
rs10865050_A 7581.669 -13.55664 0.02550848
rs12053429_T 7579.567 -13.53976 0.01950383
rs59185885_G 7347.221 -13.62497 0.05677487
rs58815545_T 7579.865 -13.53951 0.01943143
rs3771180_T  7586.448 -13.55317 0.02007143
rs72823646_A 7585.757 -13.58861 0.03899255
rs13431828_T 7584.152 -13.59786 0.04598294
rs13408569_C 7555.054 -13.60923 0.05506850
rs13408661_A 7576.263 -13.60866 0.05510944
rs10173081_T 7582.898 -13.60741 0.05371545
rs3771175_A  7572.989 -13.56189 0.01948692
rs10197862_G 7595.980 -13.55564 0.01154937
cbind(gwas[rownames(gwas) %in% snps2, ], pip[sort(cs$cs$L2)])
                    MAF missing.rate p.value.spa p.value.norm      Stat
rs1420091_C   0.4741893            0  0.04343415   0.04343426 -254.3545
rs4399750_C   0.4742024            0  0.04219033   0.04219043 -255.9176
rs2110660_G   0.4739445            0  0.04202196   0.04202206 -256.1081
rs1420090_C   0.4741980            0  0.04195790   0.04195801 -256.2307
rs7565653_A   0.4741983            0  0.04197044   0.04197054 -256.2175
rs7568913_C   0.4726704            0  0.03376352   0.03376353 -267.3910
rs10179654_G  0.4725454            0  0.03006019   0.03006016 -273.1701
rs4090473_G   0.4741994            0  0.04287977   0.04287988 -255.1204
rs12476925_T  0.4738162            0  0.04398899   0.04398911 -253.7171
rs12476968_T  0.4738706            0  0.04252796   0.04252807 -255.4688
rs6721346_C   0.4737530            0  0.04447458   0.04447471 -253.1289
rs10178436_C  0.4726547            0  0.03684838   0.03684842 -262.9061
rs11679191_T  0.4737891            0  0.04481519   0.04481532 -252.7314
rs11685424_A  0.4737905            0  0.04494659   0.04494673 -252.5758
rs11685480_A  0.4743119            0  0.04743351   0.04743351 -249.7420
rs6733174_C   0.4738143            0  0.04755366   0.04755366 -249.5822
rs6543118_A   0.4727228            0  0.04026244   0.04026251 -258.3334
rs1558622_A   0.4742182            0  0.04659919   0.04659919 -250.6703
rs1558621_G   0.4738770            0  0.04687411   0.04687411 -250.3313
rs10189202_G  0.4741925            0  0.04793089   0.04793089 -249.1883
rs10191914_C  0.4742151            0  0.04757686   0.04757686 -249.5846
rs10189711_G  0.4738113            0  0.04764314   0.04764314 -249.4869
rs12712135_G  0.4726901            0  0.03887182   0.03887189 -260.1599
rs1558620_C   0.4742148            0  0.04802466   0.04802466 -249.0875
rs1558619_T   0.4740595            0  0.04795157   0.04795157 -249.1596
rs12996505_G  0.4730879            0  0.03883659   0.03883666 -260.2388
rs13020793_T  0.4742242            0  0.04813716   0.04813716 -248.9577
rs10183388_T  0.4730986            0  0.03983078   0.03983086 -258.9293
rs953934_T    0.4729525            0  0.04103713   0.04103721 -257.3664
rs1968171_T   0.4742123            0  0.04794220   0.04794220 -249.1836
rs4613307_G   0.4742125            0  0.04796262   0.04796262 -249.1609
rs1968170_A   0.4742026            0  0.04758388   0.04758388 -249.5872
rs11123918_C  0.4741587            0  0.05052438   0.05052438 -246.3781
rs10182639_A  0.4743496            0  0.05203128   0.05203128 -244.7823
rs11690443_A  0.4744681            0  0.05095669   0.05095669 -245.9098
rs12712136_C  0.4744596            0  0.05064872   0.05064872 -246.2421
rs974389_A    0.4740822            0  0.05216000   0.05216000 -244.6285
rs4142132_A   0.4744654            0  0.05064178   0.05064178 -246.2548
rs971764_T    0.4739114            0  0.05168196   0.05168196 -245.1564
rs1420088_C   0.4743646            0  0.04918105   0.04918105 -247.8470
rs11123920_T  0.4743140            0  0.04989757   0.04989757 -247.0801
rs6706844_C   0.4739374            0  0.05133120   0.05133120 -245.5290
rs11675988_C  0.4762069            0  0.05698309   0.05698309 -239.4453
rs11679900_T  0.4745015            0  0.05533114   0.05533114 -241.2578
rs11676075_C  0.4742919            0  0.05031902   0.05031902 -246.6278
rs11123921_G  0.4742925            0  0.05032595   0.05032595 -246.6205
rs12992762_C  0.4743465            0  0.05600560   0.05600560 -240.5810
rs12998412_C  0.4745086            0  0.05516205   0.05516205 -241.4267
rs11123922_C  0.4745087            0  0.05516879   0.05516879 -241.4203
rs12725988_T  0.4742123            0  0.05333701   0.05333701 -243.1924
rs76520363_A  0.4743312            0  0.05234657   0.05234657 -244.4862
rs76278109_G  0.4743494            0  0.05592508   0.05592508 -240.6635
rs76886731_T  0.4746917            0  0.05296045   0.05296045 -243.5965
rs150341880_T 0.4746447            0  0.05611893   0.05611893 -240.4858
rs138087973_G 0.4745021            0  0.05349105   0.05349105 -243.1116
rs76498201_G  0.4745064            0  0.05347515   0.05347515 -243.1284
rs12996772_T  0.4742928            0  0.05040735   0.05040735 -246.5351
rs1420102_T   0.4741610            0  0.05231199   0.05231199 -244.5174
rs12466380_G  0.4742917            0  0.05051025   0.05051025 -246.4174
rs1997467_G   0.4743260            0  0.04768922   0.04768922 -249.4460
rs1997466_G   0.4743715            0  0.05098088   0.05098088 -245.9699
                   Var         z            
rs1420091_C   15863.06 -2.019510 0.020567980
rs4399750_C   15867.49 -2.031637 0.022447600
rs2110660_G   15865.11 -2.033302 0.022180323
rs1420090_C   15870.38 -2.033936 0.022911552
rs7565653_A   15870.70 -2.033812 0.022885254
rs7568913_C   15865.02 -2.122885 0.040591813
rs10179654_G  15857.26 -2.169297 0.056352463
rs4090473_G   15874.23 -2.024878 0.021416219
rs12476925_T  15867.06 -2.014195 0.018767742
rs12476968_T  15863.71 -2.028315 0.021014149
rs6721346_C   15866.06 -2.009589 0.018115441
rs10178436_C  15862.57 -2.087440 0.030875498
rs11679191_T  15866.84 -2.006384 0.017834895
rs11685424_A  15866.78 -2.005153 0.017675726
rs11685480_A  15870.72 -1.982409 0.015798015
rs6733174_C   15867.59 -1.981336 0.014815661
rs6543118_A   15863.92 -2.051046 0.023503809
rs1558622_A   15868.37 -1.989925 0.016641187
rs1558621_G   15865.14 -1.987436 0.015141082
rs10189202_G  15871.25 -1.977981 0.015177251
rs10191914_C  15871.21 -1.981129 0.015520890
rs10189711_G  15868.26 -1.980538 0.014732695
rs12712135_G  15864.02 -2.065541 0.026154895
rs1558620_C   15871.75 -1.977150 0.015064340
rs1558619_T   15870.54 -1.977797 0.014930782
rs12996505_G  15867.91 -2.065913 0.027628580
rs13020793_T  15871.17 -1.976156 0.014872891
rs10183388_T  15868.21 -2.055499 0.025444259
rs953934_T    15867.24 -2.043154 0.022750435
rs1968171_T   15872.26 -1.977880 0.015170485
rs4613307_G   15872.28 -1.977699 0.015149208
rs1968170_A   15872.55 -1.981066 0.015516929
rs11123918_C  15874.12 -1.955497 0.012995327
rs10182639_A  15873.42 -1.942875 0.012086474
rs11690443_A  15873.08 -1.951844 0.013046980
rs12712136_C  15873.70 -1.954444 0.013324062
rs974389_A    15870.85 -1.941811 0.011567172
rs4142132_A   15874.38 -1.954503 0.013322996
rs971764_T    15874.57 -1.945773 0.011583486
rs1420088_C   15876.33 -1.967019 0.014296830
rs11123920_T  15877.82 -1.960841 0.013555044
rs6706844_C   15875.06 -1.948701 0.011960113
rs11675988_C  15824.65 -1.903441 0.011531797
rs11679900_T  15850.78 -1.916267 0.010290338
rs11676075_C  15877.97 -1.957242 0.013213798
rs11123921_G  15877.98 -1.957183 0.013208009
rs12992762_C  15849.11 -1.910992 0.009792043
rs12998412_C  15850.96 -1.917598 0.010402649
rs11123922_C  15851.01 -1.917544 0.010396758
rs12725988_T  15841.77 -1.932182 0.010272990
rs76520363_A  15877.54 -1.940273 0.011192302
rs76278109_G  15849.57 -1.911619 0.009830752
rs76886731_T  15844.22 -1.935243 0.011286261
rs150341880_T 15851.18 -1.910111 0.009961313
rs138087973_G 15851.71 -1.930935 0.011417901
rs76498201_G  15851.78 -1.931064 0.011446676
rs12996772_T  15878.23 -1.956491 0.013134177
rs1420102_T   15876.94 -1.940557 0.011449107
rs12466380_G  15877.24 -1.955617 0.012973333
rs1997467_G   15869.63 -1.980127 0.014645578
rs1997466_G   15884.16 -1.951641 0.012393843
rm(res, gwas, X, fit)

2. COA

region = "chr2_102100001_105300000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/coa/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/coa_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]

pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)

class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
$cs$L1
 [1] 2261 2267 2275 2280 2284 2285 2300 2304 2314 2318 2323 2324 2362 2365 2367
[16] 2368 2369 2375 2384 2409 2441 2469 2496


$purity
   min.abs.corr mean.abs.corr median.abs.corr
L1    0.9808287      0.993961       0.9959249

$cs_index
[1] 1

$coverage
[1] 0.9571007

$requested_coverage
[1] 0.95
snps1 = colnames(X)[cs$cs$L1]
colors <- ifelse(rownames(gwas) %in% snps1, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.5, pch = 20, main = "CS 1")

Version Author Date
aa454ea yunqiyang0215 2024-06-21
cbind(gwas[rownames(gwas) %in% snps1, ], pip[sort(cs$cs$L1)])
                    MAF missing.rate  p.value.spa p.value.norm      Stat
rs72823635_C  0.1384102            0 3.640657e-36 3.586463e-38 -565.3715
rs950881_T    0.1384052            0 3.650732e-36 3.596916e-38 -565.3431
rs10179458_T  0.1384360            0 3.414756e-36 3.344086e-38 -565.5294
rs72823641_A  0.1377047            0 5.234953e-37 4.132563e-39 -571.0181
rs10189154_T  0.1383818            0 2.548608e-36 2.419064e-38 -566.5161
rs10189526_T  0.1383816            0 2.532777e-36 2.402474e-38 -566.5365
rs11679893_A  0.1383882            0 2.425671e-36 2.291413e-38 -566.6889
rs10865050_A  0.1384279            0 2.126636e-36 1.983525e-38 -567.2004
rs12053429_T  0.1383980            0 2.452400e-36 2.318132e-38 -566.5963
rs4625927_C   0.1360328            0 3.103566e-36 2.879335e-38 -558.4277
rs59185885_G  0.1357253            0 3.083702e-36 2.866879e-38 -557.1747
rs58815545_T  0.1384010            0 2.441741e-36 2.307155e-38 -566.6235
rs3771180_T   0.1384616            0 4.257845e-37 3.374196e-39 -573.2972
rs72823646_A  0.1383742            0 7.893597e-37 6.626818e-39 -571.0281
rs13431828_T  0.1383453            0 1.069497e-36 9.257254e-39 -569.8501
rs13408569_C  0.1380420            0 6.873934e-37 5.670846e-39 -570.3877
rs13408661_A  0.1382438            0 6.675565e-37 5.497518e-39 -571.2896
rs10173081_T  0.1383423            0 9.488544e-37 8.108849e-39 -570.2477
rs3771175_A   0.1380877            0 1.381360e-36 1.215203e-38 -568.5501
rs10197862_G  0.1386554            0 8.108652e-37 6.876994e-39 -571.2970
rs145573519_T 0.1386368            0 1.596594e-36 1.459462e-38 -564.9405
rs56179005_A  0.1386146            0 1.019437e-36 8.876248e-39 -570.0474
rs72823669_T  0.1384047            0 4.251175e-37 3.357369e-39 -572.6834
                   Var         z           
rs72823635_C  1915.629 -12.91749 0.01062986
rs950881_T    1915.503 -12.91727 0.01059881
rs10179458_T  1915.103 -12.92287 0.01146301
rs72823641_A  1905.031 -13.08274 0.10723183
rs10189154_T  1914.411 -12.94776 0.01590902
rs10189526_T  1914.392 -12.94829 0.01602472
rs11679893_A  1914.348 -12.95192 0.01687270
rs10865050_A  1914.531 -12.96299 0.01966084
rs12053429_T  1913.985 -12.95103 0.01665957
rs4625927_C   1863.986 -12.93438 0.01394483
rs59185885_G  1855.535 -12.93471 0.01386645
rs58815545_T  1914.062 -12.95140 0.01674456
rs3771180_T   1915.756 -13.09814 0.13722082
rs72823646_A  1915.608 -13.04681 0.06482151
rs13431828_T  1915.191 -13.02131 0.04476226
rs13408569_C  1907.841 -13.05867 0.07789837
rs13408661_A  1913.187 -13.06104 0.08058440
rs10173081_T  1914.890 -13.03142 0.05191360
rs3771175_A   1912.565 -13.00052 0.03332018
rs10197862_G  1918.242 -13.04398 0.05188656
rs145573519_T 1892.435 -12.98650 0.02369409
rs56179005_A  1915.573 -13.02452 0.03957983
rs72823669_T  1911.546 -13.09852 0.11447487
rm(res, gwas, X, fit)

3. AOA

region = "chr2_102100001_105300000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/aoa/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/aoa_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]

pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)

class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
$cs$L1
 [1] 2234 2263 2268 2291 2340 2345 2348 2377 2386 2388 2397 2401 2422


$purity
   min.abs.corr mean.abs.corr median.abs.corr
L1    0.9237923     0.9613092       0.9408626

$cs_index
[1] 1

$coverage
[1] 0.9553805

$requested_coverage
[1] 0.95
snps1 = colnames(X)[cs$cs$L1]
colors <- ifelse(rownames(gwas) %in% snps1, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.8, pch = 20, main = "CS 1")

Version Author Date
aa454ea yunqiyang0215 2024-06-21
cbind(gwas[rownames(gwas) %in% snps1, ], pip[sort(cs$cs$L1)])
                   MAF missing.rate  p.value.spa p.value.norm     Stat      Var
rs12470864_A 0.3863606            0 3.271588e-13 3.219111e-13 682.5887 8779.527
rs13020553_G 0.3862615            0 3.197035e-13 3.145611e-13 682.9466 8781.230
rs950880_A   0.3863995            0 3.257407e-13 3.205116e-13 682.9326 8786.959
rs13001325_T 0.3861511            0 2.619143e-13 2.576125e-13 685.5612 8783.714
rs1420104_A  0.3861597            0 2.750791e-13 2.705829e-13 684.9582 8784.109
rs12479210_T 0.3864228            0 3.037822e-13 2.988743e-13 683.8086 8786.786
rs13019081_C 0.3862194            0 3.119249e-13 3.068887e-13 683.4134 8785.215
rs1420101_T  0.3817173            0 6.321158e-13 6.221672e-13 673.4475 8759.543
rs13001714_G 0.3936798            0 1.126760e-11 1.114961e-11 637.9647 8825.688
rs12712142_A 0.3936688            0 1.068219e-11 1.056966e-11 638.6946 8825.863
rs6543119_T  0.3934532            0 1.292892e-11 1.279536e-11 636.2281 8829.345
rs13017455_T 0.3934435            0 1.197511e-11 1.185034e-11 637.2591 8829.038
rs11123923_A 0.3936404            0 1.173727e-11 1.161501e-11 637.7911 8836.236
                    z            
rs12470864_A 7.284899 0.114354967
rs13020553_G 7.288012 0.116707204
rs950880_A   7.285486 0.114628070
rs13001325_T 7.314879 0.139194856
rs1420104_A  7.308280 0.133206898
rs12479210_T 7.294903 0.121686457
rs13019081_C 7.291339 0.119155594
rs1420101_T  7.195534 0.073043494
rs13001714_G 6.790822 0.007546732
rs12712142_A 6.798524 0.007857954
rs6543119_T  6.770934 0.006868286
rs13017455_T 6.782024 0.007266150
rs11123923_A 6.784921 0.007488015
rm(res, gwas, X, fit)

sessionInfo()
R version 4.1.1 (2021-08-10)
Platform: x86_64-apple-darwin20.6.0 (64-bit)
Running under: macOS Monterey 12.0.1

Matrix products: default
BLAS:   /usr/local/Cellar/openblas/0.3.18/lib/libopenblasp-r0.3.18.dylib
LAPACK: /usr/local/Cellar/r/4.1.1_1/lib/R/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] logisticsusie_0.0.0.9004 testthat_3.1.0           susieR_0.12.35          
[4] survival_3.2-11          workflowr_1.6.2         

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.8.3       lattice_0.20-44    prettyunits_1.1.1  ps_1.6.0          
 [5] rprojroot_2.0.2    digest_0.6.28      utf8_1.2.2         R6_2.5.1          
 [9] plyr_1.8.6         RcppZiggurat_0.1.6 evaluate_0.14      highr_0.9         
[13] ggplot2_3.4.3      pillar_1.9.0       rlang_1.1.1        rstudioapi_0.13   
[17] irlba_2.3.5        whisker_0.4        callr_3.7.3        jquerylib_0.1.4   
[21] Matrix_1.5-3       rmarkdown_2.11     desc_1.4.0         devtools_2.4.2    
[25] splines_4.1.1      stringr_1.4.0      munsell_0.5.0      mixsqp_0.3-43     
[29] compiler_4.1.1     httpuv_1.6.3       xfun_0.27          pkgconfig_2.0.3   
[33] pkgbuild_1.2.0     htmltools_0.5.5    tidyselect_1.2.0   tibble_3.1.5      
[37] matrixStats_0.63.0 reshape_0.8.9      fansi_0.5.0        crayon_1.4.1      
[41] dplyr_1.0.7        withr_2.5.0        later_1.3.0        grid_4.1.1        
[45] jsonlite_1.7.2     gtable_0.3.0       lifecycle_1.0.3    git2r_0.28.0      
[49] magrittr_2.0.1     scales_1.2.1       Rfast_2.0.6        cli_3.6.1         
[53] stringi_1.7.5      cachem_1.0.6       fs_1.5.0           promises_1.2.0.1  
[57] remotes_2.4.2      bslib_0.4.1        ellipsis_0.3.2     generics_0.1.2    
[61] vctrs_0.6.3        tools_4.1.1        glue_1.4.2         purrr_0.3.4       
[65] parallel_4.1.1     processx_3.8.1     pkgload_1.2.3      fastmap_1.1.0     
[69] yaml_2.2.1         colorspace_2.0-2   sessioninfo_1.1.1  memoise_2.0.1     
[73] knitr_1.36         usethis_2.1.3      sass_0.4.4