• Description:
    • Region 1
    • Region 2
    • Region 3

Last updated: 2024-06-20

Checks: 7 0

Knit directory: survival-data-analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240324) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version f5dfe15. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Unstaged changes:
    Deleted:    analysis/logistic_gwas_asthma.Rmd
    Deleted:    analysis/susie_asthma_result.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/susie_asthma_result1.Rmd) and HTML (docs/susie_asthma_result1.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd f5dfe15 yunqiyang0215 2024-06-20 wflow_publish("analysis/susie_asthma_result1.Rmd")
html fc8e7c4 yunqiyang0215 2024-06-20 Build site.
Rmd cb1583e yunqiyang0215 2024-06-20 wflow_publish("analysis/susie_asthma_result1.Rmd")

Description:

Coxph Susie result on all asthma/ AOA/ COA in UKBiobank.

library(survival)
library(susieR)
devtools::load_all("/Users/nicholeyang/Downloads/logisticsusie")
ℹ Loading logisticsusie

Region 1

Strong signals for COA, marginal significant for AOA. rs61894547 was the most significant SNP reported by Carole’s paper, but not the most significant one in my result. However, have the largest PIP.

1. All asthma cases

region = "chr11_75500001_77400000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/all/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/all_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]
print(res[[3]])
      user     system    elapsed 
116070.891  65190.274   9564.771 
pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)
pip.sorted = sort(pip, decreasing = TRUE)
pip.sorted[1:10]
 [1] 0.62563969 0.36681900 0.21652826 0.18795848 0.16064130 0.11232667
 [7] 0.10899708 0.07188830 0.06583735 0.05808435
class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
$cs$L2
[1]  829 1000

$cs$L1
 [1]  943  951  952  954  961  964  965  968  979 1001


$purity
   min.abs.corr mean.abs.corr median.abs.corr
L2    0.9428971     0.9428971       0.9428971
L1    0.9003599     0.9619019       0.9510408

$cs_index
[1] 2 1

$coverage
[1] 0.9890498 0.9574096

$requested_coverage
[1] 0.95
par(mfrow = c(1,2))
snps1 = colnames(X)[cs$cs$L1]
colors <- ifelse(rownames(gwas) %in% snps1, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.8, pch = 20, main = "CS 1")

snps2 = colnames(X)[cs$cs$L2]
colors <- ifelse(rownames(gwas) %in% snps2, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.8, pch = 20, main = "CS 2")

Version Author Date
fc8e7c4 yunqiyang0215 2024-06-20
cbind(gwas[rownames(gwas) %in% snps1, ], pip[sort(cs$cs$L1)])
                   MAF missing.rate  p.value.spa p.value.norm      Stat
rs61893460_A 0.4520203            0 8.124552e-38 7.706256e-38  1613.997
rs7126418_T  0.4519984            0 1.379899e-37 1.309905e-37  1607.742
rs7110818_T  0.4512180            0 1.195983e-37 1.134530e-37  1608.185
rs7114362_T  0.4968866            0 9.059745e-36 8.818957e-36 -1570.311
rs7936070_T  0.4766971            0 1.503789e-37 1.452115e-37  1612.065
rs7936312_T  0.4766166            0 1.251399e-37 1.208159e-37  1613.890
rs7936323_A  0.4765950            0 1.070192e-37 1.033056e-37  1615.204
rs7936434_C  0.4768852            0 2.342714e-37 2.263324e-37  1607.740
rs11236791_A 0.4518935            0 8.407000e-38 7.973748e-38  1613.119
rs11236797_A 0.4510802            0 5.710907e-38 5.409022e-38  1616.420
                  Var         z           
rs61893460_A 15755.24  12.85849 0.06583735
rs7126418_T  15733.73  12.81742 0.04220489
rs7110818_T  15715.07  12.82856 0.04494202
rs7114362_T  15815.14 -12.48674 0.02049406
rs7936070_T  15838.20  12.80942 0.16064130
rs7936312_T  15838.79  12.82369 0.18795848
rs7936323_A  15834.63  12.83582 0.21652826
rs7936434_C  15838.51  12.77494 0.10899708
rs11236791_A 15744.57  12.85586 0.05808435
rs11236797_A 15735.62  12.88583 0.07188830
cbind(gwas[rownames(gwas) %in% snps2, ], pip[sort(cs$cs$L2)])
                    MAF missing.rate  p.value.spa p.value.norm     Stat
rs61894547_T 0.05155540            0 3.916273e-24 8.543620e-25 570.9379
rs55646091_A 0.05086819            0 5.110427e-25 9.672793e-26 572.9645
                  Var        z          
rs61894547_T 3083.681 10.28145 0.3668190
rs55646091_A 2983.742 10.48931 0.6256397

2. COA

region = "chr11_75500001_77400000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/coa/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/coa_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]

pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)

class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
$cs$L1
[1]  943  951  952  961  964  965  968  979 1001

$cs$L2
[1]  829 1000


$purity
   min.abs.corr mean.abs.corr median.abs.corr
L1    0.9491341     0.9718758       0.9511525
L2    0.9427185     0.9427185       0.9427185

$cs_index
[1] 1 2

$coverage
[1] 0.9664054 0.9999830

$requested_coverage
[1] 0.95
par(mfrow = c(1,2))
snps1 = colnames(X)[cs$cs$L1]
colors <- ifelse(rownames(gwas) %in% snps1, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.8, pch = 20, main = "CS 1")

snps2 = colnames(X)[cs$cs$L2]
colors <- ifelse(rownames(gwas) %in% snps2, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.8, pch = 20, main = "CS 2")

Version Author Date
fc8e7c4 yunqiyang0215 2024-06-20
cbind(gwas[rownames(gwas) %in% snps1, ], pip[sort(cs$cs$L1)])
                   MAF missing.rate  p.value.spa p.value.norm     Stat      Var
rs61893460_A 0.4514041            0 9.768368e-35 7.292156e-35 776.1724 3970.740
rs7126418_T  0.4513778            0 2.682089e-34 2.019865e-34 770.4486 3965.300
rs7110818_T  0.4505984            0 4.350409e-34 3.284013e-34 767.5109 3960.668
rs7936070_T  0.4760599            0 4.340150e-34 3.511120e-34 770.3164 3993.243
rs7936312_T  0.4759791            0 3.808504e-34 3.078221e-34 771.0068 3993.379
rs7936323_A  0.4759578            0 3.122270e-34 2.520459e-34 771.9348 3992.346
rs7936434_C  0.4762484            0 4.409483e-34 3.568758e-34 770.2264 3993.180
rs11236791_A 0.4512776            0 5.639224e-35 4.187165e-35 778.7052 3967.866
rs11236797_A 0.4504619            0 7.104772e-35 5.269381e-35 777.3307 3965.725
                    z           
rs61893460_A 12.31750 0.11519132
rs7126418_T  12.23505 0.05051082
rs7110818_T  12.19552 0.03266226
rs7936070_T  12.19007 0.10260708
rs7936312_T  12.20079 0.11384264
rs7936323_A  12.21706 0.13434046
rs7936434_C  12.18874 0.10180916
rs11236791_A 12.36217 0.18323304
rs11236797_A 12.34368 0.14755555
cbind(gwas[rownames(gwas) %in% snps2, ], pip[sort(cs$cs$L2)])
                    MAF missing.rate  p.value.spa p.value.norm     Stat
rs61894547_T 0.05133647            0 5.289826e-31 3.923856e-34 338.8359
rs55646091_A 0.05064274            0 1.900986e-30 1.698689e-33 329.9953
                  Var        z          
rs61894547_T 773.7703 12.18101 0.8735478
rs55646091_A 748.6081 12.06092 0.1293317

3. AOA

region = "chr11_75500001_77400000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/aoa/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/aoa_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]

pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)

class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
$cs$L1
 [1]  927  943  951  952  954  961  964  965  968  975  979  990  998 1001 1011


$purity
   min.abs.corr mean.abs.corr median.abs.corr
L1    0.8866167     0.9479983       0.9486556

$cs_index
[1] 1

$coverage
[1] 0.9786045

$requested_coverage
[1] 0.95
snps1 = colnames(X)[cs$cs$L1]
colors <- ifelse(rownames(gwas) %in% snps1, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.8, pch = 20, main = "CS 1")

Version Author Date
fc8e7c4 yunqiyang0215 2024-06-20
cbind(gwas[rownames(gwas) %in% snps1, ], pip[sort(cs$cs$L1)])
                   MAF missing.rate  p.value.spa p.value.norm      Stat
rs2212434_T  0.4459042            0 1.180847e-08 1.177059e-08  544.8959
rs61893460_A 0.4500073            0 1.006457e-08 1.003220e-08  548.8137
rs7126418_T  0.4499901            0 1.225724e-08 1.221881e-08  545.2186
rs7110818_T  0.4492170            0 9.716273e-09 9.684795e-09  548.6854
rs7114362_T  0.4987621            0 2.299994e-09 2.292086e-09 -573.7888
rs7936070_T  0.4747088            0 9.528090e-09 9.499610e-09  551.3555
rs7936312_T  0.4746268            0 8.941648e-09 8.914703e-09  552.3982
rs7936323_A  0.4746036            0 8.621435e-09 8.595334e-09  552.9179
rs7936434_C  0.4748971            0 1.240088e-08 1.236504e-08  547.0490
rs4494327_T  0.4991553            0 5.440181e-09 5.423273e-09 -561.0342
rs11236791_A 0.4498759            0 1.375619e-08 1.371371e-08  543.5143
rs10160518_G 0.4992504            0 4.477610e-09 4.463369e-09 -564.2245
rs2155219_T  0.4996877            0 7.540926e-09 7.518396e-09 -556.0470
rs11236797_A 0.4490612            0 1.245507e-08 1.241597e-08  545.0017
rs7930763_A  0.4986349            0 7.366281e-09 7.344218e-09 -555.4006
                  Var         z           
rs2212434_T  9128.890  5.703016 0.04631248
rs61893460_A 9173.030  5.730184 0.05289074
rs7126418_T  9160.160  5.696645 0.04455621
rs7110818_T  9149.649  5.736159 0.05423549
rs7114362_T  9220.138 -5.975626 0.19137559
rs7936070_T  9228.392  5.739429 0.05519014
rs7936312_T  9228.713  5.750183 0.05833582
rs7936323_A  9226.294  5.756348 0.06022704
rs7936434_C  9228.343  5.694615 0.04388581
rs4494327_T  9249.114 -5.833635 0.08829031
rs11236791_A 9166.331  5.676926 0.04027700
rs10160518_G 9251.549 -5.866036 0.10499977
rs2155219_T  9258.281 -5.778915 0.06624745
rs11236797_A 9161.653  5.693914 0.04374122
rs7930763_A  9224.176 -5.782858 0.06706628
rm()

Region 2

No GWAS significant signal for COA, marginal significant for AOA.

Result: for all asthma and COA, no CS found. For AOA, there is one CS. rs56389811_T was the top significant signal reported by Carole’s paper, and also the top significant one found in AOA survival gwas. PIP = 0.2

1. All asthma cases

region = "chr12_46000001_48700000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/all/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/all_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]
print(res[[3]])
     user    system   elapsed 
58385.924 32800.712  4853.472 
pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)
pip.sorted = sort(pip, decreasing = TRUE)
pip.sorted[1:10]
 [1] 0.16103664 0.15329430 0.13547046 0.12479556 0.12383535 0.06007752
 [7] 0.05636508 0.04679767 0.04200849 0.03698004
class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
NULL

$coverage
NULL

$requested_coverage
[1] 0.95

2. COA

region = "chr12_46000001_48700000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/coa/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/coa_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]

pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)

class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
NULL

$coverage
NULL

$requested_coverage
[1] 0.95

3. AOA

region = "chr12_46000001_48700000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/aoa/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/aoa_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]

pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)

class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
$cs$L1
[1] 760 785 787 808 812 814 818 828 829


$purity
   min.abs.corr mean.abs.corr median.abs.corr
L1    0.9091167     0.9655223       0.9615681

$cs_index
[1] 1

$coverage
[1] 0.954442

$requested_coverage
[1] 0.95
snps1 = colnames(X)[cs$cs$L1]
colors <- ifelse(rownames(gwas) %in% snps1, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.8, pch = 20, main = "CS 1")

Version Author Date
fc8e7c4 yunqiyang0215 2024-06-20
cbind(gwas[rownames(gwas) %in% snps1, ], pip[sort(cs$cs$L1)])
                   MAF missing.rate  p.value.spa p.value.norm      Stat
rs73107980_T 0.2409617            0 2.672868e-09 2.622406e-09 -487.2183
rs73107993_T 0.2486728            0 7.335992e-10 7.177201e-10 -512.9498
rs55726902_A 0.2423548            0 9.548414e-10 9.338834e-10 -504.9693
rs11168244_T 0.2389714            0 2.196870e-10 2.135056e-10 -520.8690
rs11168245_G 0.2391581            0 2.026872e-10 1.969276e-10 -522.1264
rs11168246_A 0.2092811            0 2.426769e-09 2.369254e-09 -446.0817
rs56389811_T 0.2389045            0 1.324647e-10 1.284605e-10 -527.2831
rs11168250_T 0.2389891            0 1.395104e-10 1.353413e-10 -527.3332
rs11168252_A 0.2392910            0 1.480046e-10 1.436179e-10 -525.1814
                  Var         z           
rs73107980_T 6697.022 -5.953642 0.01450955
rs73107993_T 6929.274 -6.162132 0.04253712
rs55726902_A 6807.408 -6.120319 0.03359861
rs11168244_T 6725.614 -6.351298 0.13217838
rs11168245_G 6731.772 -6.363718 0.14305372
rs11168246_A 5582.740 -5.970226 0.01800813
rs56389811_T 6726.716 -6.428983 0.21584288
rs11168250_T 6744.640 -6.421046 0.19956945
rs11168252_A 6708.584 -6.412005 0.18871140
rm(res, gwas, X, fit)

Region 3

Very strong signals for COA, very week signals for AOA.

1. All asthma cases

region = "chr17_33500001_39800000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/all/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/all_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]
print(res[[3]])
     user    system   elapsed 
268671.80 153861.85  22346.75 
pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)
pip.sorted = sort(pip, decreasing = TRUE)
pip.sorted[1:10]
 [1] 0.82458455 0.70062370 0.30037338 0.12825964 0.11330354 0.10882188
 [7] 0.10600954 0.09703998 0.09403512 0.08914059
class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
$cs$L1
 [1] 1467 1470 1471 1478 1479 1484 1491 1493 1501 1524

$cs$L2
[1] 3086 3350


$purity
   min.abs.corr mean.abs.corr median.abs.corr
L1    0.9748638     0.9939885       0.9991312
L2    0.8652420     0.8652420       0.8652420

$cs_index
[1] 1 2

$coverage
[1] 0.9607429 0.9994304

$requested_coverage
[1] 0.95
par(mfrow = c(1,2))
snps1 = colnames(X)[cs$cs$L1]
colors <- ifelse(rownames(gwas) %in% snps1, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.5, pch = 20, main = "CS 1")

snps2 = colnames(X)[cs$cs$L2]
colors <- ifelse(rownames(gwas) %in% snps2, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.5, pch = 20, main = "CS 2")

Version Author Date
fc8e7c4 yunqiyang0215 2024-06-20
cbind(gwas[rownames(gwas) %in% snps1, ], pip[sort(cs$cs$L1)])
                   MAF missing.rate  p.value.spa p.value.norm      Stat
rs11651596_C 0.4711579            0 9.947331e-36 9.618739e-36 -1570.315
rs12949100_A 0.4709323            0 7.665040e-36 7.409160e-36 -1572.964
rs8069176_A  0.4712393            0 1.199672e-35 1.160289e-35 -1568.498
rs4795399_C  0.4712166            0 8.096519e-36 7.827701e-36 -1573.030
rs2305480_A  0.4712096            0 9.136234e-36 8.833860e-36 -1571.808
rs11078926_A 0.4711895            0 9.466887e-36 9.153782e-36 -1571.440
rs11078927_T 0.4710100            0 1.059990e-35 1.024952e-35 -1570.176
rs12939832_A 0.4710054            0 8.304129e-36 8.027765e-36 -1572.232
rs4795400_T  0.4712255            0 7.079374e-36 6.843430e-36 -1573.472
rs9303279_C  0.4799832            0 1.659336e-35 1.610852e-35 -1565.204
                  Var         z           
rs11651596_C 15832.73 -12.47983 0.08914059
rs12949100_A 15833.46 -12.50060 0.11330354
rs8069176_A  15834.00 -12.46489 0.07470562
rs4795399_C  15845.87 -12.49623 0.10882188
rs2305480_A  15845.64 -12.48661 0.09703998
rs11078926_A 15845.40 -12.48378 0.09403512
rs11078927_T 15842.77 -12.47478 0.08500385
rs12939832_A 15834.88 -12.49422 0.10600954
rs4795400_T  15827.70 -12.50691 0.12825964
rs9303279_C  15834.02 -12.43871 0.07128375
cbind(gwas[rownames(gwas) %in% snps2, ], pip[sort(cs$cs$L2)])
                     MAF missing.rate  p.value.spa p.value.norm     Stat
rs112401631_A 0.02299226            0 3.594625e-10 2.742929e-10 227.7786
rs8067124_T   0.02203134            0 1.540705e-09 1.236998e-09 200.3148
                   Var        z          
rs112401631_A 1301.973 6.312653 0.7006237
rs8067124_T   1087.127 6.075373 0.3003734
rm(res, gwas, X, fit)

2. COA

region = "chr17_33500001_39800000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/coa/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/coa_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]

pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)
pip.sorted = sort(pip, decreasing = TRUE)

class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
$cs$L1
[1] 1467 1470 1471 1478 1479 1484 1491 1493


$purity
   min.abs.corr mean.abs.corr median.abs.corr
L1    0.9987126      0.999371       0.9993555

$cs_index
[1] 1

$coverage
[1] 0.9730042

$requested_coverage
[1] 0.95
snps1 = colnames(X)[cs$cs$L1]
colors <- ifelse(rownames(gwas) %in% snps1, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.5, pch = 20, main = "CS 1")

Version Author Date
fc8e7c4 yunqiyang0215 2024-06-20
cbind(gwas[rownames(gwas) %in% snps1, ], pip[sort(cs$cs$L1)])
                   MAF missing.rate  p.value.spa p.value.norm      Stat
rs11651596_C 0.4716738            0 1.020407e-85 1.761956e-86 -1244.913
rs12949100_A 0.4714520            0 2.488787e-85 4.344104e-86 -1242.038
rs8069176_A  0.4717552            0 1.071309e-85 1.855596e-86 -1244.792
rs4795399_C  0.4717367            0 7.864877e-86 1.353189e-86 -1246.273
rs2305480_A  0.4717295            0 8.198479e-86 1.411140e-86 -1246.129
rs11078926_A 0.4717091            0 1.010142e-85 1.744655e-86 -1245.442
rs11078927_T 0.4715354            0 3.534607e-85 6.223003e-86 -1241.244
rs12939832_A 0.4715304            0 3.507188e-85 6.174890e-86 -1240.954
                  Var         z           
rs11651596_C 3989.285 -19.71022 0.14754075
rs12949100_A 3989.365 -19.66450 0.06671948
rs8069176_A  3989.573 -19.70760 0.14008476
rs4795399_C  3992.592 -19.72357 0.19316881
rs2305480_A  3992.531 -19.72145 0.18545768
rs11078926_A 3992.474 -19.71072 0.15131288
rs11078927_T 3991.667 -19.64626 0.04795115
rs12939832_A 3989.644 -19.64666 0.04836222
rm(res, gwas, X, fit)

3. AOA

region = "chr17_33500001_39800000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/aoa/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/aoa_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]

pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)
pip.sorted = sort(pip, decreasing = TRUE)

class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
NULL

$coverage
NULL

$requested_coverage
[1] 0.95
rm(res, gwas, X, fit)

sessionInfo()
R version 4.1.1 (2021-08-10)
Platform: x86_64-apple-darwin20.6.0 (64-bit)
Running under: macOS Monterey 12.0.1

Matrix products: default
BLAS:   /usr/local/Cellar/openblas/0.3.18/lib/libopenblasp-r0.3.18.dylib
LAPACK: /usr/local/Cellar/r/4.1.1_1/lib/R/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] logisticsusie_0.0.0.9004 testthat_3.1.0           susieR_0.12.35          
[4] survival_3.2-11          workflowr_1.6.2         

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.8.3       lattice_0.20-44    prettyunits_1.1.1  ps_1.6.0          
 [5] rprojroot_2.0.2    digest_0.6.28      utf8_1.2.2         R6_2.5.1          
 [9] plyr_1.8.6         RcppZiggurat_0.1.6 evaluate_0.14      highr_0.9         
[13] ggplot2_3.4.3      pillar_1.9.0       rlang_1.1.1        rstudioapi_0.13   
[17] irlba_2.3.5        whisker_0.4        callr_3.7.3        jquerylib_0.1.4   
[21] Matrix_1.5-3       rmarkdown_2.11     desc_1.4.0         devtools_2.4.2    
[25] splines_4.1.1      stringr_1.4.0      munsell_0.5.0      mixsqp_0.3-43     
[29] compiler_4.1.1     httpuv_1.6.3       xfun_0.27          pkgconfig_2.0.3   
[33] pkgbuild_1.2.0     htmltools_0.5.5    tidyselect_1.2.0   tibble_3.1.5      
[37] matrixStats_0.63.0 reshape_0.8.9      fansi_0.5.0        crayon_1.4.1      
[41] dplyr_1.0.7        withr_2.5.0        later_1.3.0        grid_4.1.1        
[45] jsonlite_1.7.2     gtable_0.3.0       lifecycle_1.0.3    git2r_0.28.0      
[49] magrittr_2.0.1     scales_1.2.1       Rfast_2.0.6        cli_3.6.1         
[53] stringi_1.7.5      cachem_1.0.6       fs_1.5.0           promises_1.2.0.1  
[57] remotes_2.4.2      bslib_0.4.1        ellipsis_0.3.2     generics_0.1.2    
[61] vctrs_0.6.3        tools_4.1.1        glue_1.4.2         purrr_0.3.4       
[65] parallel_4.1.1     processx_3.8.1     pkgload_1.2.3      fastmap_1.1.0     
[69] yaml_2.2.1         colorspace_2.0-2   sessioninfo_1.1.1  memoise_2.0.1     
[73] knitr_1.36         usethis_2.1.3      sass_0.4.4