• 1. Region chr11_75500001_77400000: COA pvalue = 1e-30, AOA pvalue = 1e-10.
  • 2. Region chr12_46000001_48700000: No GWAS significant signal for COA, marginal significant for AOA.
  • 3. Region chr17_33500001_39800000: COA pval = 1e-80, very week signals for AOA.
  • 4. Region chr6_30500001_32100000: Both very significant signals for AOA and COA, pval = 1e-20.

Last updated: 2024-06-28

Checks: 7 0

Knit directory: survival-data-analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240324) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 00fbcd9. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/plot_km.Rmd) and HTML (docs/plot_km.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 00fbcd9 yunqi yang 2024-06-28 wflow_publish("analysis/plot_km.Rmd")
html 2500dc6 yunqi yang 2024-06-25 Build site.
Rmd bce6d66 yunqi yang 2024-06-25 wflow_publish("analysis/plot_km.Rmd")
html 83f40c7 yunqi yang 2024-06-24 Build site.
Rmd a9b2bd9 yunqi yang 2024-06-24 wflow_publish("analysis/plot_km.Rmd")

library(survival)
library(survminer)
Loading required package: ggplot2
Loading required package: ggpubr

Attaching package: 'survminer'
The following object is masked from 'package:survival':

    myeloma
library(susieR)
library(dplyr)

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union
library(gridExtra)

Attaching package: 'gridExtra'
The following object is masked from 'package:dplyr':

    combine
devtools::load_all("/project2/mstephens/yunqiyang/surv-susie/logisticsusie")
ℹ Loading logisticsusie

1. Region chr11_75500001_77400000: COA pvalue = 1e-30, AOA pvalue = 1e-10.

region = "chr11_75500001_77400000"
res = readRDS(paste0("/project2/mstephens/yunqiyang/surv-susie/realdata/self_report_asthma/result/all/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/project2/mstephens/yunqiyang/surv-susie/realdata/self_report_asthma/gwas_surv/all_gwas_", region, ".rds"))
pheno = readRDS("/project2/mstephens/yunqiyang/surv-susie/realdata/self_report_asthma/surv_all_asthma.rds")
fit = res[[1]]
X = res[[2]]

effect_estimate <- data.frame(cbind(colnames(X), 
                                    colSums(fit$alpha * fit$mu)))
colnames(effect_estimate) = c("SNP", "effect")
effect_estimate$effect = as.numeric(effect_estimate$effect)

gwas = data.frame(gwas)
gwas$SNP = rownames(gwas)
res = merge(effect_estimate, gwas, by = "SNP")
res.sorted <- res %>% arrange(desc(abs(effect)), p.value.spa)
res.sorted[1:6, ]
           SNP      effect        MAF missing.rate  p.value.spa p.value.norm
1 rs55646091_A 0.078817939 0.05086819            0 5.110427e-25 9.672793e-26
2 rs61894547_T 0.044914244 0.05155540            0 3.916273e-24 8.543620e-25
3  rs7936323_A 0.019238185 0.47659499            0 1.070192e-37 1.033056e-37
4  rs7936312_T 0.016654340 0.47661661            0 1.251399e-37 1.208159e-37
5  rs7936070_T 0.014189396 0.47669712            0 1.503789e-37 1.452115e-37
6  rs7936434_C 0.009538595 0.47688517            0 2.342714e-37 2.263324e-37
       Stat       Var        z
1  572.9645  2983.742 10.48931
2  570.9379  3083.681 10.28145
3 1615.2043 15834.626 12.83582
4 1613.8898 15838.788 12.82369
5 1612.0648 15838.203 12.80942
6 1607.7404 15838.510 12.77494
pheno <- pheno[order(pheno$IID), ]
snp_list = res.sorted$SNP[1:6]
plots = list()

for (i in 1:length(snp_list)){
  indx = which(colnames(X) == snp_list[i])
  # round genotype to 0, 1, 2
  geno <- cut(X[, indx], breaks = c(-Inf, 0.5, 1.5, Inf), labels = c(0, 1, 2), right = FALSE)
  geno <- as.numeric(as.character(geno))

  data <- data.frame(time = pheno$time, 
                   status = pheno$event, 
                   geno = geno)
  
  # create survival pheno
  y <- Surv(pheno$time, pheno$event)
  # fit model by different geno group
  fit <- survfit(y ~ data$geno)
  
  plots[[i]] <- ggsurvplot(fit, data = data, 
           pval = TRUE, 
           conf.int = TRUE, 
           risk.table = TRUE, 
           lwd = 0.5,
           ylim = c(0.75, 1),
           xlim = c(0, 65),
           pval.coord = c(10, 0.8),
           xlab = "Survival years",
           ylab = "Survival probability",
           title = snp_list[i],  
           ggtheme = theme_minimal() + theme(legend.text = element_text(size = 10),  # Adjust legend text size
                                             legend.title = element_text(size = 12), # Adjust legend title size
                                             axis.text = element_text(size = 10),    # Adjust axis text size
                                             axis.title = element_text(size = 12),   # Adjust axis title size
                                             strip.text = element_text(size = 10)),  # Adjust strip text size
           risk.table.fontsize = 2.5
           )  

}
# Arrange the plots in a grid layout
grid.arrange(grobs = lapply(plots, function(x) x$plot), ncol = 2)

Version Author Date
83f40c7 yunqi yang 2024-06-24

2. Region chr12_46000001_48700000: No GWAS significant signal for COA, marginal significant for AOA.

region = "chr12_46000001_48700000"
res = readRDS(paste0("/project2/mstephens/yunqiyang/surv-susie/realdata/self_report_asthma/result/all/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/project2/mstephens/yunqiyang/surv-susie/realdata/self_report_asthma/gwas_surv/all_gwas_", region, ".rds"))
pheno = readRDS("/project2/mstephens/yunqiyang/surv-susie/realdata/self_report_asthma/surv_all_asthma.rds")
fit = res[[1]]
X = res[[2]]

effect_estimate <- data.frame(cbind(colnames(X), 
                                    colSums(fit$alpha * fit$mu)))
colnames(effect_estimate) = c("SNP", "effect")
effect_estimate$effect = as.numeric(effect_estimate$effect)

gwas = data.frame(gwas)
gwas$SNP = rownames(gwas)
res = merge(effect_estimate, gwas, by = "SNP")
res.sorted <- res %>% arrange(desc(abs(effect)), p.value.spa)
res.sorted[1:6, ]
           SNP       effect       MAF missing.rate  p.value.spa p.value.norm
1 rs11168252_A -0.006449541 0.2392817            0 1.487361e-06 1.483869e-06
2 rs56389811_T -0.006110153 0.2388950            0 1.582839e-06 1.579167e-06
3 rs11168250_T -0.005340826 0.2389935            0 1.855563e-06 1.851454e-06
4 rs11168244_T -0.004894118 0.2389606            0 1.990153e-06 1.985810e-06
5 rs11168245_G -0.004851431 0.2391498            0 2.019029e-06 2.014648e-06
6 rs11168246_A -0.002366053 0.2092597            0 5.684105e-06 5.672996e-06
       Stat      Var         z
1 -515.7744 11481.97 -4.813396
2 -515.1776 11514.90 -4.800947
3 -512.4009 11544.25 -4.768997
4 -510.1971 11513.30 -4.754863
5 -510.1121 11523.58 -4.751949
6 -443.6812  9558.07 -4.538224
pheno <- pheno[order(pheno$IID), ]
snp_list = res.sorted$SNP[1:6]
plots = list()

for (i in 1:length(snp_list)){
  indx = which(colnames(X) == snp_list[i])
  # round genotype to 0, 1, 2
  geno <- cut(X[, indx], breaks = c(-Inf, 0.5, 1.5, Inf), labels = c(0, 1, 2), right = FALSE)
  geno <- as.numeric(as.character(geno))

  data <- data.frame(time = pheno$time, 
                   status = pheno$event, 
                   geno = geno)
  
  # create survival pheno
  y <- Surv(pheno$time, pheno$event)
  # fit model by different geno group
  fit <- survfit(y ~ data$geno)
  
  plots[[i]] <- ggsurvplot(fit, data = data, 
           pval = TRUE, 
           conf.int = TRUE, 
           risk.table = TRUE, 
           lwd = 0.5,
           ylim = c(0.75, 1),
           xlim = c(0, 65), 
           pval.coord = c(10, 0.8),
           xlab = "Survival years",
           ylab = "Survival probability",
           title = snp_list[i],  
           ggtheme = theme_minimal() + theme(legend.text = element_text(size = 10),  # Adjust legend text size
                                             legend.title = element_text(size = 12), # Adjust legend title size
                                             axis.text = element_text(size = 10),    # Adjust axis text size
                                             axis.title = element_text(size = 12),   # Adjust axis title size
                                             strip.text = element_text(size = 10)),  # Adjust strip text size
           risk.table.fontsize = 2.5
           )  

}
# Arrange the plots in a grid layout
grid.arrange(grobs = lapply(plots, function(x) x$plot), ncol = 2)

Version Author Date
83f40c7 yunqi yang 2024-06-24

3. Region chr17_33500001_39800000: COA pval = 1e-80, very week signals for AOA.

region = "chr17_33500001_39800000"
res = readRDS(paste0("/project2/mstephens/yunqiyang/surv-susie/realdata/self_report_asthma/result/all/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/project2/mstephens/yunqiyang/surv-susie/realdata/self_report_asthma/gwas_surv/all_gwas_", region, ".rds"))
pheno = readRDS("/project2/mstephens/yunqiyang/surv-susie/realdata/self_report_asthma/surv_all_asthma.rds")
fit = res[[1]]
X = res[[2]]

effect_estimate <- data.frame(cbind(colnames(X), 
                                    colSums(fit$alpha * fit$mu)))
colnames(effect_estimate) = c("SNP", "effect")
effect_estimate$effect = as.numeric(effect_estimate$effect)

gwas = data.frame(gwas)
gwas$SNP = rownames(gwas)
res = merge(effect_estimate, gwas, by = "SNP")
res.sorted <- res %>% arrange(desc(abs(effect)), p.value.spa)
res.sorted[1:6, ]
            SNP      effect        MAF missing.rate  p.value.spa p.value.norm
1 rs146644295_C  0.10445301 0.02227598            0 1.509883e-10 1.103519e-10
2 rs112401631_A  0.10380779 0.02299226            0 3.594625e-10 2.742929e-10
3   rs8067124_T  0.04710491 0.02203134            0 1.540705e-09 1.236998e-09
4   rs4795400_T -0.01190853 0.47122553            0 7.079374e-36 6.843430e-36
5  rs12949100_A -0.01050079 0.47093228            0 7.665040e-36 7.409160e-36
6   rs4795399_C -0.01007555 0.47121659            0 8.096519e-36 7.827701e-36
        Stat       Var          z
1   233.3248  1307.758   6.452043
2   227.7786  1301.973   6.312653
3   200.3148  1087.127   6.075373
4 -1573.4716 15827.696 -12.506911
5 -1572.9638 15833.460 -12.500598
6 -1573.0299 15845.867 -12.496229
pheno <- pheno[order(pheno$IID), ]
snp_list = res.sorted$SNP[1:6]
plots = list()
for (i in 1:length(snp_list)){
  indx = which(colnames(X) == snp_list[i])
  # round genotype to 0, 1, 2
  geno <- cut(X[, indx], breaks = c(-Inf, 0.5, 1.5, Inf), labels = c(0, 1, 2), right = FALSE)
  geno <- as.numeric(as.character(geno))

  data <- data.frame(time = pheno$time, 
                   status = pheno$event, 
                   geno = geno)
  
  # create survival pheno
  y <- Surv(pheno$time, pheno$event)
  # fit model by different geno group
  fit <- survfit(y ~ data$geno)
  
  plots[[i]] <- ggsurvplot(fit, data = data, 
           pval = TRUE, 
           conf.int = TRUE, 
           risk.table = TRUE, 
           lwd = 0.5,
           ylim = c(0.75, 1),
           xlim = c(0, 65), 
           pval.coord = c(10, 0.8),
           xlab = "Survival years",
           ylab = "Survival probability",
           title = snp_list[i],  
           ggtheme = theme_minimal() + theme(legend.text = element_text(size = 10),  # Adjust legend text size
                                             legend.title = element_text(size = 12), # Adjust legend title size
                                             axis.text = element_text(size = 10),    # Adjust axis text size
                                             axis.title = element_text(size = 12),   # Adjust axis title size
                                             strip.text = element_text(size = 10)),  # Adjust strip text size
           risk.table.fontsize = 2.5
           )

}
# Arrange the plots in a grid layout
grid.arrange(grobs = lapply(plots, function(x) x$plot), ncol = 2)
Warning: Removed 5 rows containing missing values or values outside the scale range
(`geom_step()`).
Warning: Removed 4 rows containing missing values or values outside the scale range
(`geom_point()`).
Warning: Removed 4 rows containing missing values or values outside the scale range
(`geom_step()`).
Warning: Removed 2 rows containing missing values or values outside the scale range
(`geom_point()`).

Version Author Date
83f40c7 yunqi yang 2024-06-24

4. Region chr6_30500001_32100000: Both very significant signals for AOA and COA, pval = 1e-20.

A shared signal at rs2428494_A.

region = "chr6_30500001_32100000"
res = readRDS(paste0("/project2/mstephens/yunqiyang/surv-susie/realdata/self_report_asthma/result/all/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/project2/mstephens/yunqiyang/surv-susie/realdata/self_report_asthma/gwas_surv/all_gwas_", region, ".rds"))
pheno = readRDS("/project2/mstephens/yunqiyang/surv-susie/realdata/self_report_asthma/surv_all_asthma.rds")
fit = res[[1]]
X = res[[2]]

effect_estimate <- data.frame(cbind(colnames(X), 
                                    colSums(fit$alpha * fit$mu)))
colnames(effect_estimate) = c("SNP", "effect")
effect_estimate$effect = as.numeric(effect_estimate$effect)

gwas = data.frame(gwas)
gwas$SNP = rownames(gwas)
res = merge(effect_estimate, gwas, by = "SNP")
res.sorted <- res %>% arrange(desc(abs(effect)), p.value.spa)
res.sorted[1:6, ]
            SNP       effect        MAF missing.rate  p.value.spa p.value.norm
1   rs2428494_A  0.114184536 0.47708452            0 2.359694e-51 2.196762e-51
2   rs9468965_A -0.039160929 0.07710370            0 1.821596e-13 1.512565e-13
3   rs4713451_C -0.031857500 0.08872864            0 3.316825e-13 2.852047e-13
4 rs114444221_G -0.005150370 0.06422248            0 2.759637e-12 2.328671e-12
5  rs56371837_G  0.004331622 0.04397674            0 2.200153e-01 2.200153e-01
6 rs112794500_C  0.003789191 0.04435509            0 2.213493e-01 2.213493e-01
        Stat       Var         z
1 1894.94394 15790.544 15.079877
2 -457.44138  3835.717 -7.386049
3 -522.96946  5130.548 -7.301204
4 -375.73468  2870.289 -7.013237
5   63.11993  2648.542  1.226487
6   63.39877  2687.483  1.222948
pheno <- pheno[order(pheno$IID), ]
snp_list = res.sorted$SNP[1:6]
plots = list()
for (i in 1:length(snp_list)){
  indx = which(colnames(X) == snp_list[i])
  # round genotype to 0, 1, 2
  geno <- cut(X[, indx], breaks = c(-Inf, 0.5, 1.5, Inf), labels = c(0, 1, 2), right = FALSE)
  geno <- as.numeric(as.character(geno))

  data <- data.frame(time = pheno$time, 
                   status = pheno$event, 
                   geno = geno)
  
  # create survival pheno
  y <- Surv(pheno$time, pheno$event)
  # fit model by different geno group
  fit <- survfit(y ~ data$geno)
  
  plots[[i]] <- ggsurvplot(fit, data = data, 
           pval = TRUE, 
           conf.int = TRUE, 
           risk.table = TRUE, 
           lwd = 0.5,
           ylim = c(0.75, 1),
           xlim = c(0, 65), 
           pval.coord = c(10, 0.8),
           xlab = "Survival years",
           ylab = "Survival probability",
           title = snp_list[i],  
           ggtheme = theme_minimal() + theme(legend.text = element_text(size = 10),  # Adjust legend text size
                                             legend.title = element_text(size = 12), # Adjust legend title size
                                             axis.text = element_text(size = 10),    # Adjust axis text size
                                             axis.title = element_text(size = 12),   # Adjust axis title size
                                             strip.text = element_text(size = 10)),  # Adjust strip text size
           risk.table.fontsize = 2.5
           )

}
# Arrange the plots in a grid layout
grid.arrange(grobs = lapply(plots, function(x) x$plot), ncol = 2)


sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C         LC_TIME=C           
 [4] LC_COLLATE=C         LC_MONETARY=C        LC_MESSAGES=C       
 [7] LC_PAPER=C           LC_NAME=C            LC_ADDRESS=C        
[10] LC_TELEPHONE=C       LC_MEASUREMENT=C     LC_IDENTIFICATION=C 

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] logisticsusie_0.0.0.9004 testthat_3.1.4           gridExtra_2.3           
 [4] dplyr_1.1.4              susieR_0.12.35           survminer_0.4.9         
 [7] ggpubr_0.6.0             ggplot2_3.5.1            survival_3.3-1          
[10] workflowr_1.7.0         

loaded via a namespace (and not attached):
 [1] ggtext_0.1.2       matrixStats_0.62.0 fs_1.5.2           usethis_2.1.5     
 [5] devtools_2.4.3     httr_1.4.3         rprojroot_2.0.3    tools_4.2.0       
 [9] backports_1.4.1    bslib_0.3.1        utf8_1.2.2         R6_2.5.1          
[13] irlba_2.3.5        colorspace_2.0-3   withr_2.5.0        tidyselect_1.2.1  
[17] prettyunits_1.1.1  processx_3.8.0     compiler_4.2.0     git2r_0.30.1      
[21] cli_3.6.2          xml2_1.3.3         desc_1.4.1         labeling_0.4.2    
[25] sass_0.4.1         scales_1.3.0       survMisc_0.5.6     callr_3.7.3       
[29] mixsqp_0.3-48      stringr_1.5.1      digest_0.6.29      rmarkdown_2.14    
[33] pkgconfig_2.0.3    htmltools_0.5.2    sessioninfo_1.2.2  highr_0.9         
[37] fastmap_1.1.0      rlang_1.1.3        rstudioapi_0.13    jquerylib_0.1.4   
[41] generics_0.1.2     farver_2.1.0       zoo_1.8-10         jsonlite_1.8.0    
[45] car_3.1-1          magrittr_2.0.3     Matrix_1.5-3       Rcpp_1.0.12       
[49] munsell_0.5.0      fansi_1.0.3        abind_1.4-5        lifecycle_1.0.4   
[53] stringi_1.7.6      whisker_0.4        yaml_2.3.5         carData_3.0-5     
[57] brio_1.1.3         pkgbuild_1.3.1     plyr_1.8.7         grid_4.2.0        
[61] promises_1.2.0.1   crayon_1.5.1       lattice_0.20-45    splines_4.2.0     
[65] gridtext_0.1.5     knitr_1.39         ps_1.7.0           pillar_1.9.0      
[69] ggsignif_0.6.3     pkgload_1.2.4      glue_1.6.2         evaluate_0.15     
[73] getPass_0.2-2      data.table_1.14.2  remotes_2.4.2.1    vctrs_0.6.5       
[77] httpuv_1.6.5       gtable_0.3.0       purrr_1.0.2        tidyr_1.3.1       
[81] reshape_0.8.9      km.ci_0.5-6        cachem_1.0.6       xfun_0.30         
[85] xtable_1.8-4       broom_0.8.0        rstatix_0.7.2      later_1.3.0       
[89] tibble_3.2.1       memoise_2.0.1      KMsurv_0.1-5       ellipsis_0.3.2