Last updated: 2024-05-21

Checks: 6 1

Knit directory: PPP/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240521) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 3e0915c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store

Untracked files:
    Untracked:  data/aracne.networks.csv

Unstaged changes:
    Modified:   analysis/_site.yml
    Modified:   analysis/index.Rmd
    Modified:   analysis/viper.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/viper.Rmd) and HTML (docs/viper.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 3e0915c Zhen Zuo 2024-05-21 Build site.
html 68d3a8b Zhen Zuo 2024-05-21 Build site.
Rmd e4c8a72 Zhen Zuo 2024-05-21 wflow_publish(all = TRUE)
html e4c8a72 Zhen Zuo 2024-05-21 wflow_publish(all = TRUE)
html a8e0d13 Zhen Zuo 2024-05-21 Build site.
Rmd 1bb174f Zhen Zuo 2024-05-21 Publish the initial files for myproject

Load packages

library(viper)
library(aracne.networks)

Context-specific networks

print(data(package="aracne.networks")$results[, "Item"])
 [1] "regulonblca" "regulonbrca" "reguloncesc" "reguloncoad" "regulonesca"
 [6] "regulongbm"  "regulonhnsc" "regulonkirc" "regulonkirp" "regulonlaml"
[11] "regulonlihc" "regulonluad" "regulonlusc" "regulonnet"  "regulonov"  
[16] "regulonpaad" "regulonpcpg" "regulonprad" "regulonread" "regulonsarc"
[21] "regulonstad" "regulontgct" "regulonthca" "regulonthym" "regulonucec"
df <- read.csv("data/aracne.networks.csv")
knitr::kable(df)
regulon description
regulonblca Human Bladder Carcinoma context-specific ARACNe interactome
regulonbrca Human Breast Carcinoma context-specific ARACNe interactome
reguloncesc Human Cervical Squamous Carcinoma context-specific ARACNe interactome
reguloncoad Human Colon Adenocarcinoma context-specific ARACNe interactome
regulonesca Human Esophageal Carcinoma context-specific ARACNe interactome
regulongbm Human Glioblastoma context-specific ARACNe interactome
regulonhnsc Human Head and Neck Squamous Carcinoma context-specific ARACNe interactome
regulonkirc Human Kidney Renal Clear Cell Carcinoma context-specific ARACNe interactome
regulonkirp Human Kidney Papillary Carcinoma context-specific ARACNe interactome
regulonlaml Human Acute Myeloid Leukemia context-specific ARACNe interactome
regulonlihc Human Liver Hepatocellular Carcinoma context-specific ARACNe interactome
regulonluad Human Lung Adenocarcinoma context-specific ARACNe interactome
regulonlusc Human Lung Squamous Carcinoma context-specific ARACNe interactome
regulonnet Human Neuroendocrine tumor context-specific ARACNe interactome
regulonov Human Ovarian Carcinoma context-specific ARACNe interactome
regulonpaad Human Pancreas Carcinoma context-specific ARACNe interactome
regulonpcpg Human Pheochromocytoma and Paraganglioma context-specific ARACNe interactome
regulonprad Human Prostate Carcinoma context-specific ARACNe interactome
regulonread Human Rectal Adenocarcinoma context-specific ARACNe interactome
regulonsarc Human Sarcoma context-specific ARACNe interactome
regulonstad Human Stomach Adenocarcinoma context-specific ARACNe interactome
regulontgct Human Testicular Cancer context-specific ARACNe interactome
regulonthca Human Thyroid Carcinoma context-specific ARACNe interactome
regulonthym Human Thymoma context-specific ARACNe interactome
regulonucec Human Utherine Corpus Endometroid Carcinoma context-specific ARACNe interactome
data(bcellViper, package="bcellViper")
adjfile <- system.file("aracne", "bcellaracne.adj", package = "bcellViper")
regul <- aracne2regulon(adjfile, dset, verbose = FALSE)
number of iterations= 301 
signature <- rowTtest(dset, "description", c("CB", "CC"), "N")
signature <- (qnorm(signature$p.value/2, lower.tail = FALSE) * + sign(signature$statistic))[, 1]
nullmodel <- ttestNull(dset, "description", c("CB", "CC"), "N", per = 1000, repos = TRUE, verbose = FALSE)
mrs <- msviper(signature, regulon, nullmodel, verbose = FALSE)
summary(mrs)
        Regulon Size   NES  p.value   FDR
TCF3       TCF3  298  3.30 0.000962 0.028
BCL6       BCL6  401  3.28 0.001030 0.028
KLF10     KLF10  254  3.25 0.001170 0.028
MYBL2     MYBL2  240  3.22 0.001300 0.028
TSC22D3 TSC22D3  333 -3.17 0.001520 0.028
HES1       HES1  360 -3.18 0.001470 0.028
ZNF32     ZNF32  291 -3.19 0.001420 0.028
ZMYND11 ZMYND11  452 -3.20 0.001380 0.028
ZNF101   ZNF101  301 -3.22 0.001300 0.028
KLF9       KLF9  337 -3.24 0.001190 0.028
plot(mrs, cex = .7)

Version Author Date
68d3a8b Zhen Zuo 2024-05-21
mrs <- ledge(mrs)
summary(mrs)
        Regulon Size   NES  p.value   FDR
TCF3       TCF3  298  3.30 0.000962 0.028
BCL6       BCL6  401  3.28 0.001030 0.028
KLF10     KLF10  254  3.25 0.001170 0.028
MYBL2     MYBL2  240  3.22 0.001300 0.028
TSC22D3 TSC22D3  333 -3.17 0.001520 0.028
HES1       HES1  360 -3.18 0.001470 0.028
ZNF32     ZNF32  291 -3.19 0.001420 0.028
ZMYND11 ZMYND11  452 -3.20 0.001380 0.028
ZNF101   ZNF101  301 -3.22 0.001300 0.028
KLF9       KLF9  337 -3.24 0.001190 0.028
                                              Ledge
TCF3    SMARCA4, MCM7, TRAF3IP3, NDC80, + 110 genes
BCL6        KIF14, BUB1, DLGAP4, GINS1, + 217 genes
KLF10       TRIP13, NDC80, AHNAK, KIF2C, + 99 genes
MYBL2     SMARCA4, MCM7, TRIP13, GINS1, + 138 genes
TSC22D3      NOTCH2, RAD1, RBM19, MLEC, + 190 genes
HES1          CDK4, SHC1, STX7, MAN1A1, + 104 genes
ZNF32       GNA12, PLAG1, PSMB1, CARM1, + 145 genes
ZMYND11   ANKRD26, EXTL2, IGFBP4, CTSC, + 234 genes
ZNF101     SLC46A3, GCLM, TCEA2, HMOX2, + 128 genes
KLF9          IFIT1, LPAR1, NID1, STOM, + 158 genes
signature <- bootstrapTtest(dset, "description", c("CB", "CC"), "N", verbose = FALSE)
mrs <- msviper(signature, regulon, nullmodel, verbose = FALSE)
mrs <- bootstrapmsviper(mrs, "mode")
plot(mrs, cex = .7)

Version Author Date
68d3a8b Zhen Zuo 2024-05-21
mrshadow <- shadow(mrs, regulators = 25, verbose = FALSE)
summary(mrshadow)
$msviper.results
        Regulon Size   NES p.value    FDR
BCL6       BCL6  401  3.18 0.00146 0.0709
MYBL2     MYBL2  240  3.12 0.00184 0.0709
WHSC1     WHSC1  257  3.07 0.00213 0.0709
TOP2A     TOP2A  749  3.06 0.00222 0.0709
MYBL1     MYBL1  225  3.04 0.00239 0.0709
PTTG1     PTTG1  471  3.00 0.00273 0.0709
NR1D2     NR1D2  259 -3.00 0.00266 0.0709
TSC22D3 TSC22D3  313 -3.02 0.00255 0.0709
ZNF274   ZNF274  160 -3.04 0.00235 0.0709
ZMYND11 ZMYND11  452 -3.06 0.00220 0.0709

$Shadow.pairs
 [1] "BCL6 -> TCF3"      "BCL6 -> HES1"      "MYBL2 -> ZNF32"   
 [4] "MYBL2 -> HES1"     "MYBL2 -> ZNF23"    "MYBL2 -> MEIS2"   
 [7] "KLF10 -> ZNF101"   "KLF10 -> HES1"     "KLF9 -> HES1"     
[10] "ZNF32 -> HES1"     "WHSC1 -> TSC22D3"  "WHSC1 -> ZNF101"  
[13] "WHSC1 -> IRF5"     "WHSC1 -> KDM1A"    "WHSC1 -> E2F2"    
[16] "TSC22D3 -> HES1"   "TSC22D3 -> ZNF23"  "TOP2A -> CREB3L2" 
[19] "TOP2A -> E2F2"     "TOP2A -> HES1"     "TOP2A -> HMGB2"   
[22] "TOP2A -> MEIS2"    "ZMYND11 -> IRF5"   "ZMYND11 -> E2F2"  
[25] "ZMYND11 -> HES1"   "ZMYND11 -> MEIS2"  "CREB3L2 -> E2F2"  
[28] "PRKDC -> HES1"     "IRF5 -> HES1"      "PTTG1 -> E2F2"    
[31] "ZNF274 -> E2F2"    "ZNF274 -> ZNF23"   "ZNF274 -> MEIS2"  
[34] "NR1D2 -> HES1"     "NR1D2 -> HMGB2"    "HES1 -> HMGB2"    
[37] "WHSC1 -> KLF10"    "TSC22D3 -> KLF10"  "PRKDC -> KLF10"   
[40] "ZNF274 -> KLF10"   "KDM1A -> KLF10"    "ZNF23 -> KLF10"   
[43] "HMGB2 -> KLF10"    "MEIS2 -> KLF10"    "ZNF32 -> KLF9"    
[46] "PRKDC -> KLF9"     "MYBL1 -> KLF9"     "IRF5 -> KLF9"     
[49] "ZNF274 -> KLF9"    "WHSC1 -> ZNF32"    "TSC22D3 -> ZNF32" 
[52] "KDM1A -> ZNF32"    "HMGB2 -> ZNF32"    "PRKDC -> TCF3"    
[55] "MYBL1 -> TCF3"     "IRF5 -> TCF3"      "PTTG1 -> TCF3"    
[58] "KDM1A -> TCF3"     "HMGB2 -> TCF3"     "TOP2A -> ZNF101"  
[61] "PRKDC -> ZNF101"   "MYBL1 -> ZNF101"   "PTTG1 -> ZNF101"  
[64] "ZNF274 -> ZNF101"  "NR1D2 -> ZNF101"   "PTTG1 -> CREB3L2" 
[67] "ZNF274 -> CREB3L2" "HMGB2 -> CREB3L2"  "MYBL1 -> PRKDC"   
[70] "HMGB2 -> MYBL1"    "ZNF274 -> PTTG1"   "HMGB2 -> KDM1A"   
[73] "NR1D2 -> E2F2"    

sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: aarch64-apple-darwin20
Running under: macOS Sonoma 14.5

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] aracne.networks_1.30.0 viper_1.38.0           Biobase_2.64.0        
[4] BiocGenerics_0.50.0   

loaded via a namespace (and not attached):
 [1] gtable_0.3.5       xfun_0.44          bslib_0.7.0        ggplot2_3.5.1     
 [5] htmlwidgets_1.6.4  lattice_0.22-6     vctrs_0.6.5        tools_4.4.0       
 [9] generics_0.1.3     parallel_4.4.0     tibble_3.2.1       proxy_0.4-27      
[13] fansi_1.0.6        highr_0.10         pkgconfig_2.0.3    Matrix_1.7-0      
[17] KernSmooth_2.23-24 data.table_1.15.4  lifecycle_1.0.4    compiler_4.4.0    
[21] stringr_1.5.1      git2r_0.33.0       mixtools_2.0.0     munsell_0.5.1     
[25] httpuv_1.6.15      htmltools_0.5.8.1  class_7.3-22       sass_0.4.9        
[29] yaml_2.3.8         lazyeval_0.2.2     plotly_4.10.4      later_1.3.2       
[33] pillar_1.9.0       jquerylib_0.1.4    whisker_0.4.1      tidyr_1.3.1       
[37] MASS_7.3-60.2      cachem_1.1.0       nlme_3.1-164       tidyselect_1.2.1  
[41] digest_0.6.35      stringi_1.8.4      kernlab_0.9-32     dplyr_1.1.4       
[45] purrr_1.0.2        splines_4.4.0      rprojroot_2.0.4    fastmap_1.2.0     
[49] grid_4.4.0         colorspace_2.1-0   cli_3.6.2          magrittr_2.0.3    
[53] survival_3.6-4     utf8_1.2.4         e1071_1.7-14       scales_1.3.0      
[57] promises_1.3.0     segmented_2.1-0    rmarkdown_2.27     httr_1.4.7        
[61] workflowr_1.7.1    evaluate_0.23      knitr_1.46         viridisLite_0.4.2 
[65] rlang_1.1.3        Rcpp_1.0.12        glue_1.7.0         rstudioapi_0.16.0 
[69] jsonlite_1.8.8     R6_2.5.1           fs_1.6.4