Last updated: 2024-05-24
Checks: 7 0
Knit directory: PPP/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20240521)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version fe48b9f. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .RData
Ignored: .Rhistory
Ignored: data/.DS_Store
Ignored: data/viper/.DS_Store
Ignored: output/.DS_Store
Ignored: output/viper/.DS_Store
Ignored: output/viper/exprs/.DS_Store
Ignored: output/viper/regulon/.DS_Store
Untracked files:
Untracked: formatted_data.txt
Untracked: output/viper/expr_processed/
Unstaged changes:
Modified: output/viper/regul_object/hnsc.RDS
Modified: output/viper/regul_object/kirc.RDS
Modified: output/viper/regul_object/luad.RDS
Modified: output/viper/regul_object/lusc.RDS
Modified: output/viper/regul_object/paad.RDS
Modified: output/viper/regulon/regulonblca_SYMBOL.adj
Modified: output/viper/regulon/regulonbrca_SYMBOL.adj
Modified: output/viper/regulon/reguloncesc_SYMBOL.adj
Modified: output/viper/regulon/reguloncoad_SYMBOL.adj
Modified: output/viper/regulon/regulonesca_SYMBOL.adj
Modified: output/viper/regulon/regulongbm_SYMBOL.adj
Modified: output/viper/regulon/regulonhnsc_SYMBOL.adj
Modified: output/viper/regulon/regulonkirc_SYMBOL.adj
Modified: output/viper/regulon/regulonkirp_SYMBOL.adj
Modified: output/viper/regulon/regulonlaml_SYMBOL.adj
Modified: output/viper/regulon/regulonlihc_SYMBOL.adj
Modified: output/viper/regulon/regulonluad_SYMBOL.adj
Modified: output/viper/regulon/regulonlusc_SYMBOL.adj
Modified: output/viper/regulon/regulonnet_SYMBOL.adj
Modified: output/viper/regulon/regulonov_SYMBOL.adj
Modified: output/viper/regulon/regulonpaad_SYMBOL.adj
Modified: output/viper/regulon/regulonpcpg_SYMBOL.adj
Modified: output/viper/regulon/regulonprad_SYMBOL.adj
Modified: output/viper/regulon/regulonread_SYMBOL.adj
Modified: output/viper/regulon/regulonsarc_SYMBOL.adj
Modified: output/viper/regulon/regulonstad_SYMBOL.adj
Modified: output/viper/regulon/regulontgct_SYMBOL.adj
Modified: output/viper/regulon/regulonthca_SYMBOL.adj
Modified: output/viper/regulon/regulonthym_SYMBOL.adj
Modified: output/viper/regulon/regulonucec_SYMBOL.adj
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/viper_3.Rmd
) and HTML
(docs/viper_3.html
) files. If you’ve configured a remote
Git repository (see ?wflow_git_remote
), click on the
hyperlinks in the table below to view the files as they were in that
past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | fe48b9f | Zhen Zuo | 2024-05-24 | Publish files |
library(viper)
dset <- readRDS("output/viper/expr_processed/kirc.RDS")
signature <- rowTtest(dset, "description", "tumor", "normal")
signature <- (qnorm(signature$p.value/2, lower.tail = FALSE) * sign(signature$statistic))[, 1]
nullmodel <- ttestNull(dset, "description", "tumor", "normal", per = 1000, repos = TRUE, verbose = FALSE)
regulon <- readRDS("output/viper/regul_object/kirc.RDS")
regulon
Object of class regulon with 3045 regulators, 9693 targets and 107201 interactions
mrs <- msviper(signature, regulon, nullmodel, verbose = FALSE)
summary(mrs)
Regulon Size NES p.value FDR
EGF EGF 43 -3.66 2.48e-04 0.0307
STAP1 STAP1 35 -3.67 2.39e-04 0.0307
DMRT2 DMRT2 101 -3.68 2.33e-04 0.0307
FGF9 FGF9 53 -3.69 2.26e-04 0.0307
TMPRSS2 TMPRSS2 59 -3.74 1.85e-04 0.0307
KNG1 KNG1 57 -3.82 1.33e-04 0.0307
GCGR GCGR 65 -3.84 1.23e-04 0.0307
FOXI1 FOXI1 83 -3.92 8.99e-05 0.0307
PIK3C2G PIK3C2G 32 -3.97 7.13e-05 0.0307
OXGR1 OXGR1 89 -4.04 5.34e-05 0.0307
msVIPER infers the relative activity of a regulatory gene based on
the enrichment of its most closely regulated targets on a given GES, but
does not identify which are the target genes enriched in the GES.
Subramanian et al. proposed a method called leading-edge analysis to
identify the genes driving the enrichment of a gene-set on a GES based
on Gene Set Enrichment Analysis (GSEA). We implemented the leading-edge
analysis in the ledge function of the viper package. The function only
has a
msviper' class object as argument and generates an updated
msviper’
object that now includes a `ledge’ slot.
mrs <- ledge(mrs)
summary(mrs)
Regulon Size NES p.value FDR
EGF EGF 43 -3.66 2.48e-04 0.0307
STAP1 STAP1 35 -3.67 2.39e-04 0.0307
DMRT2 DMRT2 101 -3.68 2.33e-04 0.0307
FGF9 FGF9 53 -3.69 2.26e-04 0.0307
TMPRSS2 TMPRSS2 59 -3.74 1.85e-04 0.0307
KNG1 KNG1 57 -3.82 1.33e-04 0.0307
GCGR GCGR 65 -3.84 1.23e-04 0.0307
FOXI1 FOXI1 83 -3.92 8.99e-05 0.0307
PIK3C2G PIK3C2G 32 -3.97 7.13e-05 0.0307
OXGR1 OXGR1 89 -4.04 5.34e-05 0.0307
Ledge
EGF DCLK1, SKA3, GNG7, TTR, + 34 genes
STAP1 KCNE1, LY9, CHAC1, KIT, + 25 genes
DMRT2 PART1, TPD52L1, CKMT2, C6orf52, + 88 genes
FGF9 ADRB1, TUBB2A, PRR15L, LINC01587, + 44 genes
TMPRSS2 C1orf168, GRHL1, WSCD2, RPF2, + 48 genes
KNG1 TDRD5, SNX33, ZCCHC16, PTPN13, + 49 genes
GCGR HELZ2, NDRG2, TMSB15B, COL28A1, + 56 genes
FOXI1 COQ3, PTPN3, APOBEC3F, C1orf168, + 61 genes
PIK3C2G ALDH1A2, CLUL1, STAP1, CEP55, + 27 genes
OXGR1 C9orf84, LZTS1, ADRB1, LINC01587, + 77 genes
signature <- bootstrapTtest(dset, "description", "tumor", "normal", per = 1000, verbose = FALSE)
mrs <- msviper(signature, regulon, nullmodel, verbose = FALSE)
mrs <- bootstrapmsviper(mrs, "mode")
summary(mrs)
Regulon Size NES p.value FDR
STAP1 STAP1 35 -3.65 2.57e-04 0.0325
DMRT2 DMRT2 101 -3.66 2.57e-04 0.0325
EGF EGF 43 -3.66 2.52e-04 0.0325
FGF9 FGF9 53 -3.67 2.40e-04 0.0325
TMPRSS2 TMPRSS2 59 -3.70 2.17e-04 0.0325
KNG1 KNG1 57 -3.81 1.40e-04 0.0325
GCGR GCGR 65 -3.81 1.37e-04 0.0325
FOXI1 FOXI1 83 -3.89 9.89e-05 0.0325
PIK3C2G PIK3C2G 32 -3.96 7.39e-05 0.0325
OXGR1 OXGR1 89 -4.02 5.75e-05 0.0325
mrshadow <- shadow(mrs, regulators = 25, verbose = FALSE)
summary(mrshadow)
$msviper.results
Regulon Size NES p.value FDR
EGF EGF 36 -3.63 2.83e-04 0.0124
NRL NRL 63 -3.67 2.43e-04 0.0124
STAP1 STAP1 28 -3.70 2.12e-04 0.0124
ASB5 ASB5 30 -3.72 2.02e-04 0.0124
KNG1 KNG1 39 -3.72 1.97e-04 0.0124
TMPRSS2 TMPRSS2 45 -3.79 1.48e-04 0.0124
OXGR1 OXGR1 70 -3.81 1.37e-04 0.0124
GCGR GCGR 53 -3.87 1.10e-04 0.0124
FOXI1 FOXI1 67 -3.88 1.04e-04 0.0124
PIK3C2G PIK3C2G 29 -3.98 7.02e-05 0.0124
$Shadow.pairs
[1] "OXGR1 -> FGF9" "OXGR1 -> DMRT2" "OXGR1 -> NR0B2" "PIK3C2G -> DMRT2"
[5] "FOXI1 -> KNG1" "GCGR -> DMRT2"
mrs <- msviperCombinatorial(mrs, verbose = FALSE)
mrs <- msviperSynergy(mrs, verbose = FALSE)
summary(mrs)
Regulon Size NES p.value FDR Synergy
VGLL1--ABCG1 VGLL1--ABCG1 30 12.71 5.42e-37 7.39e-34 4.18e-25
PDLIM1--SRGAP3 PDLIM1--SRGAP3 27 12.46 1.23e-35 8.39e-33 3.49e-07
DMRT2--BMP7 DMRT2--BMP7 30 4.57 4.94e-06 2.24e-03 7.32e-04
PAK6--VGLL1 PAK6--VGLL1 30 4.46 8.31e-06 2.83e-03 2.94e-04
BMP7--VGLL1 BMP7--VGLL1 41 4.32 1.53e-05 3.82e-03 1.87e-06
PRDM16--VGLL1 PRDM16--VGLL1 29 4.28 1.87e-05 3.82e-03 5.95e-04
GPC3--VGLL1 GPC3--VGLL1 25 4.27 1.96e-05 3.82e-03 7.52e-04
ADGRF1--SRGAP3 ADGRF1--SRGAP3 27 4.03 5.65e-05 8.37e-03 4.18e-05
TFAP2B--VGLL1 TFAP2B--VGLL1 39 4.01 6.14e-05 8.37e-03 3.22e-06
OXGR1 OXGR1 89 -4.02 5.75e-05 8.37e-03 NA
vpres <- viper(dset, regulon, verbose = FALSE)
tmp <- rowTtest(vpres, "description", "tumor", "normal")
data.frame(Gene = rownames(tmp$p.value), t = round(tmp$statistic, 2), "p-value" = signif(tmp$p.value, 3))[order(tmp$p.value)[1:10], ]
Gene t p.value
KNG1 KNG1 -60.76 1.25e-118
FOXI1 FOXI1 -59.71 2.25e-117
DMRT2 DMRT2 -59.57 3.28e-117
TMPRSS2 TMPRSS2 -58.73 3.41e-116
FGF9 FGF9 -58.31 1.12e-115
GCGR GCGR -57.31 1.91e-114
OXGR1 OXGR1 -57.27 2.12e-114
PIK3C2G PIK3C2G -56.97 5.15e-114
EGF EGF -56.94 5.62e-114
PAK5 PAK5 -56.59 1.53e-113
sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: aarch64-apple-darwin20
Running under: macOS Sonoma 14.5
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: America/New_York
tzcode source: internal
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] viper_1.38.0 Biobase_2.64.0 BiocGenerics_0.50.0
[4] workflowr_1.7.1
loaded via a namespace (and not attached):
[1] gtable_0.3.5 xfun_0.44 bslib_0.7.0 ggplot2_3.5.1
[5] htmlwidgets_1.6.4 processx_3.8.4 lattice_0.22-6 callr_3.7.6
[9] vctrs_0.6.5 tools_4.4.0 ps_1.7.6 generics_0.1.3
[13] parallel_4.4.0 tibble_3.2.1 proxy_0.4-27 fansi_1.0.6
[17] pkgconfig_2.0.3 Matrix_1.7-0 KernSmooth_2.23-24 data.table_1.15.4
[21] lifecycle_1.0.4 compiler_4.4.0 stringr_1.5.1 git2r_0.33.0
[25] mixtools_2.0.0 munsell_0.5.1 getPass_0.2-4 httpuv_1.6.15
[29] htmltools_0.5.8.1 class_7.3-22 sass_0.4.9 yaml_2.3.8
[33] lazyeval_0.2.2 plotly_4.10.4 later_1.3.2 pillar_1.9.0
[37] jquerylib_0.1.4 whisker_0.4.1 tidyr_1.3.1 MASS_7.3-60.2
[41] cachem_1.1.0 nlme_3.1-164 tidyselect_1.2.1 digest_0.6.35
[45] stringi_1.8.4 kernlab_0.9-32 dplyr_1.1.4 purrr_1.0.2
[49] splines_4.4.0 rprojroot_2.0.4 fastmap_1.2.0 grid_4.4.0
[53] colorspace_2.1-0 cli_3.6.2 magrittr_2.0.3 survival_3.6-4
[57] utf8_1.2.4 e1071_1.7-14 scales_1.3.0 promises_1.3.0
[61] segmented_2.1-0 rmarkdown_2.27 httr_1.4.7 evaluate_0.23
[65] knitr_1.46 viridisLite_0.4.2 rlang_1.1.3 Rcpp_1.0.12
[69] glue_1.7.0 rstudioapi_0.16.0 jsonlite_1.8.8 R6_2.5.1
[73] fs_1.6.4