Last updated: 2024-06-20
Checks: 6 1
Knit directory: PPP/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of
the R Markdown file created these results, you’ll want to first commit
it to the Git repo. If you’re still working on the analysis, you can
ignore this warning. When you’re finished, you can run
wflow_publish
to commit the R Markdown file and build the
HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20240521)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version f0809ae. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .RData
Ignored: .Rhistory
Ignored: analysis/.DS_Store
Ignored: analysis/.RData
Ignored: analysis/.Rhistory
Ignored: code/.DS_Store
Ignored: code/TieDIE-devel/.DS_Store
Ignored: code/TieDIE-devel/examples/.DS_Store
Ignored: code/TieDIE-devel/examples/hnsc/.DS_Store
Ignored: code/TieDIE-tiedie2/.DS_Store
Ignored: code/TieDIE-tiedie2/examples/.DS_Store
Ignored: data/.DS_Store
Ignored: data/Phosphoproteome_BCM_GENCODE_v34_harmonized_v1/.DS_Store
Ignored: data/Phosphoproteome_BCM_GENCODE_v34_harmonized_v1/README/.DS_Store
Ignored: data/Proteome_BCM_GENCODE_v34_harmonized_v1/.DS_Store
Ignored: data/Proteome_BCM_GENCODE_v34_harmonized_v1/README/.DS_Store
Ignored: output/.DS_Store
Ignored: output/expr/.DS_Store
Ignored: output/pho/.DS_Store
Ignored: output/regulon/.DS_Store
Ignored: temp/.DS_Store
Untracked files:
Untracked: analysis/PCA.Rmd
Unstaged changes:
Modified: analysis/KSEA.Rmd
Modified: analysis/index.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/KSEA.Rmd
) and HTML
(docs/KSEA.html
) files. If you’ve configured a remote Git
repository (see ?wflow_git_remote
), click on the hyperlinks
in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | f0809ae | Zhen Zuo | 2024-06-17 | . |
Rmd | 9d7bb61 | Zhen Zuo | 2024-06-16 | . |
html | 9d7bb61 | Zhen Zuo | 2024-06-16 | . |
html | e55118d | Zhen Zuo | 2024-06-16 | Build site. |
html | 7576f76 | Zhen Zuo | 2024-06-16 | wflow_publish("*", all = TRUE) |
Rmd | 3477290 | Zhen Zuo | 2024-06-16 | update workflow |
html | 3477290 | Zhen Zuo | 2024-06-16 | update workflow |
Rmd | 8c84adb | Zhen Zuo | 2024-06-16 | . |
library(clusterProfiler)
clusterProfiler v4.12.0 For help: https://yulab-smu.top/biomedical-knowledge-mining-book/
If you use clusterProfiler in published research, please cite:
T Wu, E Hu, S Xu, M Chen, P Guo, Z Dai, T Feng, L Zhou, W Tang, L Zhan, X Fu, S Liu, X Bo, and G Yu. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation. 2021, 2(3):100141
Attaching package: 'clusterProfiler'
The following object is masked from 'package:stats':
filter
library(ggplot2)
full_name <- c("Human Kidney Renal Clear Cell Carcinoma",
"Human Head and Neck Squamous Carcinoma",
"Human Lung Squamous Carcinoma",
"Human Lung Adenocarcinoma",
"Human Pancreas Carcinoma")
names <- c("kirc", "hnsc", "lusc", "luad", "paad")
ksa <- read.gmt("data/gold_standard_CoPheeKSA.gmt")
i <- 1
for (name in names) {
cat("\n\n")
cat("# ", full_name[i], sep = "")
cat("\n\n")
i <- i + 1
dps <- read.csv(paste("output/DPS/", name, "_fc_0.05_kinases.csv",
sep = ""))
dps_plus <- dps[dps$Fold_Change > 0, ]
dps_neg <- dps[dps$Fold_Change < 0, ]
cat("\n\n")
cat("## Positive")
cat("\n\n")
dps <- dps_plus
dps <- dps[order(dps$Adjusted_P_Value, decreasing = TRUE), ]
gse <- enricher(gene = dps$Seq, TERM2GENE = ksa)
dir.create(paste("output/pho/", name, "/", sep = ""), showWarnings = FALSE)
write.table(gse@result, paste("output/pho/", name, "/KSEA.csv",
sep = ""))
cat("\n\n")
cat("### Barplots")
cat("\n\n")
print(mutate(gse, qscore = -log(p.adjust, base = 10)) %>%
barplot(x = "qscore") + ggtitle(full_name[i]))
cat("\n\n")
cat("### Dotplots")
cat("\n\n")
print(dotplot(gse, showCategory = 30) + ggtitle(full_name[i]))
cat("\n\n")
cat("### Kinase-Concept Network")
cat("\n\n")
print(cnetplot(gse, color.params = list(foldChange = dps$Fold_Change)) +
ggtitle(full_name[i]))
cat("\n\n")
cat("### Enrichment Map")
cat("\n\n")
print(emapplot(enrichplot::pairwise_termsim(gse)) + ggtitle(full_name[i]))
cat("\n\n")
cat("## Negative")
cat("\n\n")
dps <- dps_neg
dps <- dps[order(dps$Adjusted_P_Value, decreasing = TRUE), ]
gse <- enricher(gene = dps$Seq, TERM2GENE = ksa)
dir.create(paste("output/pho/", name, "/", sep = ""), showWarnings = FALSE)
write.table(gse@result, paste("output/pho/", name, "/KSEA.csv",
sep = ""))
cat("\n\n")
cat("### Barplots")
cat("\n\n")
print(mutate(gse, qscore = -log(p.adjust, base = 10)) %>%
barplot(x = "qscore") + ggtitle(full_name[i]))
cat("\n\n")
cat("### Dotplots")
cat("\n\n")
print(dotplot(gse, showCategory = 30) + ggtitle(full_name[i]))
cat("\n\n")
cat("### Kinase-Concept Network")
cat("\n\n")
print(cnetplot(gse, color.params = list(foldChange = dps$Fold_Change)) +
ggtitle(full_name[i]))
cat("\n\n")
cat("### Enrichment Map")
cat("\n\n")
print(emapplot(enrichplot::pairwise_termsim(gse)) + ggtitle(full_name[i]))
}
sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: aarch64-apple-darwin20
Running under: macOS Sonoma 14.5
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: America/New_York
tzcode source: internal
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggplot2_3.5.1 clusterProfiler_4.12.0
loaded via a namespace (and not attached):
[1] RColorBrewer_1.1-3 rstudioapi_0.16.0 jsonlite_1.8.8
[4] magrittr_2.0.3 farver_2.1.2 rmarkdown_2.27
[7] fs_1.6.4 zlibbioc_1.50.0 vctrs_0.6.5
[10] memoise_2.0.1 ggtree_3.12.0 htmltools_0.5.8.1
[13] gridGraphics_0.5-1 sass_0.4.9 bslib_0.7.0
[16] plyr_1.8.9 cachem_1.1.0 whisker_0.4.1
[19] igraph_2.0.3 lifecycle_1.0.4 pkgconfig_2.0.3
[22] Matrix_1.7-0 R6_2.5.1 fastmap_1.2.0
[25] gson_0.1.0 GenomeInfoDbData_1.2.12 digest_0.6.35
[28] aplot_0.2.3 enrichplot_1.24.0 colorspace_2.1-0
[31] ggnewscale_0.4.10 patchwork_1.2.0 AnnotationDbi_1.66.0
[34] S4Vectors_0.42.0 rprojroot_2.0.4 RSQLite_2.3.7
[37] labeling_0.4.3 fansi_1.0.6 httr_1.4.7
[40] polyclip_1.10-6 compiler_4.4.0 bit64_4.0.5
[43] withr_3.0.0 BiocParallel_1.38.0 viridis_0.6.5
[46] DBI_1.2.3 highr_0.11 ggforce_0.4.2
[49] MASS_7.3-61 HDO.db_0.99.1 tools_4.4.0
[52] ape_5.8 scatterpie_0.2.3 httpuv_1.6.15
[55] glue_1.7.0 nlme_3.1-165 GOSemSim_2.30.0
[58] promises_1.3.0 grid_4.4.0 shadowtext_0.1.3
[61] reshape2_1.4.4 fgsea_1.30.0 generics_0.1.3
[64] gtable_0.3.5 tidyr_1.3.1 data.table_1.15.4
[67] tidygraph_1.3.1 utf8_1.2.4 XVector_0.44.0
[70] BiocGenerics_0.50.0 ggrepel_0.9.5 pillar_1.9.0
[73] stringr_1.5.1 yulab.utils_0.1.4 later_1.3.2
[76] splines_4.4.0 dplyr_1.1.4 tweenr_2.0.3
[79] treeio_1.28.0 lattice_0.22-6 bit_4.0.5
[82] tidyselect_1.2.1 GO.db_3.19.1 Biostrings_2.72.1
[85] knitr_1.47 git2r_0.33.0 gridExtra_2.3
[88] IRanges_2.38.0 stats4_4.4.0 xfun_0.45
[91] graphlayouts_1.1.1 Biobase_2.64.0 stringi_1.8.4
[94] UCSC.utils_1.0.0 workflowr_1.7.1 lazyeval_0.2.2
[97] ggfun_0.1.5 yaml_2.3.8 evaluate_0.24.0
[100] codetools_0.2-20 ggraph_2.2.1 tibble_3.2.1
[103] qvalue_2.36.0 ggplotify_0.1.2 cli_3.6.2
[106] munsell_0.5.1 jquerylib_0.1.4 Rcpp_1.0.12
[109] GenomeInfoDb_1.40.1 png_0.1-8 parallel_4.4.0
[112] blob_1.2.4 DOSE_3.30.1 viridisLite_0.4.2
[115] tidytree_0.4.6 scales_1.3.0 purrr_1.0.2
[118] crayon_1.5.2 rlang_1.1.4 cowplot_1.1.3
[121] fastmatch_1.1-4 KEGGREST_1.44.0