Last updated: 2024-05-23
Checks: 7 0
Knit directory: PPP/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20240521)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version ff3702e. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: data/.DS_Store
Ignored: data/viper/.DS_Store
Ignored: data/viper/regulon/
Ignored: output/.DS_Store
Ignored: output/viper/.DS_Store
Ignored: output/viper/exprs/.DS_Store
Unstaged changes:
Modified: output/viper/regul_object/kirc.RDS
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/viper_1.Rmd
) and HTML
(docs/viper_1.html
) files. If you’ve configured a remote
Git repository (see ?wflow_git_remote
), click on the
hyperlinks in the table below to view the files as they were in that
past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 0c921fb | Zhen Zuo | 2024-05-23 | Build site. |
Rmd | c2e5e9a | Zhen Zuo | 2024-05-23 | wflow_publish("output/viper/exprs/*", all = TRUE) |
Rmd | db57fb9 | Zhen Zuo | 2024-05-23 | Publish files |
Rmd | 76d0a4e | Zhen Zuo | 2024-05-23 | wflow_git_commit(all = TRUE) |
Rmd | c2509b0 | Zhen Zuo | 2024-05-23 | Publish files |
html | fee8330 | Zhen Zuo | 2024-05-22 | Build site. |
Rmd | c8c01a0 | Zhen Zuo | 2024-05-22 | Publish files |
Rmd | cc34e48 | Zhen Zuo | 2024-05-22 | wflow_publish(all = TRUE) |
html | 5f9a8bc | Zhen Zuo | 2024-05-22 | Build site. |
Rmd | 94fd282 | Zhen Zuo | 2024-05-22 | update viper input prepare |
html | 94fd282 | Zhen Zuo | 2024-05-22 | update viper input prepare |
The VIPER (Virtual Inference of Protein-activity by Enriched Regulon analysis) algorithm allows computational inference of protein activity, on an individual sample basis, from gene expression profile data. It uses the expression of genes that are most directly regulated by a given protein, such as the targets of a transcription factor (TF), as an accurate reporter of its activity.
We have shown that analysis of TF targets inferred by the ARACNe algorithm, using the Master Regulator Inference algorithm (MARINA), is effective in identifying drivers of specific cellular phenotype which could be experimentally validated.
library(viper)
library(aracne.networks)
library(dplyr)
library(plyr)
library(stringr)
library(Biobase)
library(EnsDb.Hsapiens.v86)
ARACNe-AP was run on RNA-Seq datasets normalized using Variance-Stabilizing Transformation. The raw data was downloaded on April 15th, 2015 from the TCGA official website.
items <- data(package="aracne.networks")$results[, "Item"]
print(items)
[1] "regulonblca" "regulonbrca" "reguloncesc" "reguloncoad" "regulonesca"
[6] "regulongbm" "regulonhnsc" "regulonkirc" "regulonkirp" "regulonlaml"
[11] "regulonlihc" "regulonluad" "regulonlusc" "regulonnet" "regulonov"
[16] "regulonpaad" "regulonpcpg" "regulonprad" "regulonread" "regulonsarc"
[21] "regulonstad" "regulontgct" "regulonthca" "regulonthym" "regulonucec"
df <- read.csv("data/viper/aracne.networks.csv")
knitr::kable(df)
regulon | description |
---|---|
regulonblca | Human Bladder Carcinoma context-specific ARACNe interactome |
regulonbrca | Human Breast Carcinoma context-specific ARACNe interactome |
reguloncesc | Human Cervical Squamous Carcinoma context-specific ARACNe interactome |
reguloncoad | Human Colon Adenocarcinoma context-specific ARACNe interactome |
regulonesca | Human Esophageal Carcinoma context-specific ARACNe interactome |
regulongbm | Human Glioblastoma context-specific ARACNe interactome |
regulonhnsc | Human Head and Neck Squamous Carcinoma context-specific ARACNe interactome |
regulonkirc | Human Kidney Renal Clear Cell Carcinoma context-specific ARACNe interactome |
regulonkirp | Human Kidney Papillary Carcinoma context-specific ARACNe interactome |
regulonlaml | Human Acute Myeloid Leukemia context-specific ARACNe interactome |
regulonlihc | Human Liver Hepatocellular Carcinoma context-specific ARACNe interactome |
regulonluad | Human Lung Adenocarcinoma context-specific ARACNe interactome |
regulonlusc | Human Lung Squamous Carcinoma context-specific ARACNe interactome |
regulonnet | Human Neuroendocrine tumor context-specific ARACNe interactome |
regulonov | Human Ovarian Carcinoma context-specific ARACNe interactome |
regulonpaad | Human Pancreas Carcinoma context-specific ARACNe interactome |
regulonpcpg | Human Pheochromocytoma and Paraganglioma context-specific ARACNe interactome |
regulonprad | Human Prostate Carcinoma context-specific ARACNe interactome |
regulonread | Human Rectal Adenocarcinoma context-specific ARACNe interactome |
regulonsarc | Human Sarcoma context-specific ARACNe interactome |
regulonstad | Human Stomach Adenocarcinoma context-specific ARACNe interactome |
regulontgct | Human Testicular Cancer context-specific ARACNe interactome |
regulonthca | Human Thyroid Carcinoma context-specific ARACNe interactome |
regulonthym | Human Thymoma context-specific ARACNe interactome |
regulonucec | Human Utherine Corpus Endometroid Carcinoma context-specific ARACNe interactome |
Export network to adj files
for (item in items) {
if (!file.exists(paste("output/viper/regulon/", item, ".adj",
sep = ""))) {
get(item)
write.regulon(get(item), file = paste("output/viper/regulon/", item, ".adj",
sep = ""))
}
}
Convert Entrez Gene ids to SYMBOL.
for (item in items) {
if (!file.exists(paste("output/viper/regulon/", item, "_SYMBOL.adj", sep = ""))) {
df <- read.csv(paste("output/viper/regulon/", item, ".adj", sep = ""),
sep = "\t")
geneID <- ensembldb::select(EnsDb.Hsapiens.v86, keys = as.character(df$Regulator),
keytype = "ENTREZID", columns = c("SYMBOL", "ENTREZID", "GENEID"))
df$Regulator <- plyr::mapvalues(df$Regulator, from = geneID$ENTREZID,
to = geneID$SYMBOL, warn_missing = FALSE)
geneID <- ensembldb::select(EnsDb.Hsapiens.v86, keys = as.character(df$Target),
keytype = "ENTREZID", columns = c("SYMBOL", "ENTREZID", "GENEID"))
df$Target <- plyr::mapvalues(df$Target, from = geneID$ENTREZID,
to = geneID$SYMBOL, warn_missing = FALSE)
can_be_integer <- function(x) {
suppressWarnings(!is.na(as.integer(x)))
}
f1 <- !sapply(df$Regulator, can_be_integer)
f2 <- !sapply(df$Target, can_be_integer)
df <- df[f1 & f2, ]
write.table(df, file = paste("output/viper/regulon/", item, "_SYMBOL.adj",
sep = ""),sep = "\t",quote = FALSE, row.names = FALSE)
}
}
df <- read.csv("data/viper/RNA_regulon_pairs.csv")
knitr::kable(df)
Lable | RNA | regulon | description |
---|---|---|---|
kirc_normal | data/viper/RNA_BCM_v1/ccRCC_RNAseq_gene_RSEM_coding_UQ_1500_log2_Normal.txt | regulonkirc | Human Kidney Renal Clear Cell Carcinoma context-specific ARACNe interactome |
kirc_tumor | data/viper/RNA_BCM_v1/ccRCC_RNAseq_gene_RSEM_coding_UQ_1500_log2_Tumor.txt | regulonkirc | Human Kidney Renal Clear Cell Carcinoma context-specific ARACNe interactome |
hnsc_normal | data/viper/RNA_BCM_v1/HNSCC_RNAseq_gene_RSEM_coding_UQ_1500_log2_Normal.txt | regulonhnsc | Human Head and Neck Squamous Carcinoma context-specific ARACNe interactome |
hnsc_tumor | data/viper/RNA_BCM_v1/HNSCC_RNAseq_gene_RSEM_coding_UQ_1500_log2_Tumor.txt | regulonhnsc | Human Head and Neck Squamous Carcinoma context-specific ARACNe interactome |
lusc_normal | data/viper/RNA_BCM_v1/LSCC_RNAseq_gene_RSEM_coding_UQ_1500_log2_Normal.txt | regulonlusc | Human Lung Squamous Carcinoma context-specific ARACNe interactome |
lusc_tumor | data/viper/RNA_BCM_v1/LSCC_RNAseq_gene_RSEM_coding_UQ_1500_log2_Tumor.txt | regulonlusc | Human Lung Squamous Carcinoma context-specific ARACNe interactome |
luad_normal | data/viper/RNA_BCM_v1/LUAD_RNAseq_gene_RSEM_coding_UQ_1500_log2_Normal.txt | regulonluad | Human Lung Adenocarcinoma context-specific ARACNe interactome |
luad_tumor | data/viper/RNA_BCM_v1/LUAD_RNAseq_gene_RSEM_coding_UQ_1500_log2_Tumor.txt | regulonluad | Human Lung Adenocarcinoma context-specific ARACNe interactome |
paad_normal | data/viper/RNA_BCM_v1/PDAC_RNAseq_gene_RSEM_coding_UQ_1500_log2_Normal.txt | regulonpaad | Human Pancreas Carcinoma context-specific ARACNe interactome |
paad_tumor | data/viper/RNA_BCM_v1/PDAC_RNAseq_gene_RSEM_coding_UQ_1500_log2_Tumor.txt | regulonpaad | Human Pancreas Carcinoma context-specific ARACNe interactome |
for (i in 1:nrow(df)) {
exprsFile <- df$RNA[i]
adjfile <- paste("output/viper/regulon/", df$regulon[1], "_SYMBOL.adj", sep = "")
exprs <- as.matrix(read.table(exprsFile, header = TRUE, sep = "\t",
row.names = 1, as.is = TRUE))
rownames(exprs) <- sub("\\..*$", "", rownames(exprs))
geneID <- ensembldb::select(EnsDb.Hsapiens.v86, keys = rownames(exprs),
keytype = "GENEID", columns = c("SYMBOL", "ENTREZID", "GENEID"))
rownames(exprs) <- plyr::mapvalues(rownames(exprs), from = geneID$GENEID,
to = geneID$SYMBOL, warn_missing = FALSE)
exprs <- exprs[!sapply(rownames(exprs), function(x) startsWith(x, "ENSG")),
]
# Identify duplicated row names
duplicated_rows <- duplicated(rownames(exprs))
# Remove rows with duplicated row names
cleaned_exprs <- exprs[!duplicated_rows, , drop = FALSE]
saveRDS(cleaned_exprs, paste("output/viper/exprs/", df$Lable[i], ".RDS", sep = ""))
}
sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: aarch64-apple-darwin20
Running under: macOS Sonoma 14.5
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: America/New_York
tzcode source: internal
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] EnsDb.Hsapiens.v86_2.99.0 ensembldb_2.28.0
[3] AnnotationFilter_1.28.0 GenomicFeatures_1.56.0
[5] AnnotationDbi_1.66.0 GenomicRanges_1.56.0
[7] GenomeInfoDb_1.40.0 IRanges_2.38.0
[9] S4Vectors_0.42.0 stringr_1.5.1
[11] plyr_1.8.9 dplyr_1.1.4
[13] aracne.networks_1.30.0 viper_1.38.0
[15] Biobase_2.64.0 BiocGenerics_0.50.0
[17] workflowr_1.7.1
loaded via a namespace (and not attached):
[1] bitops_1.0-7 DBI_1.2.2
[3] rlang_1.1.3 magrittr_2.0.3
[5] git2r_0.33.0 matrixStats_1.3.0
[7] e1071_1.7-14 compiler_4.4.0
[9] RSQLite_2.3.6 getPass_0.2-4
[11] png_0.1-8 callr_3.7.6
[13] vctrs_0.6.5 ProtGenerics_1.36.0
[15] pkgconfig_2.0.3 crayon_1.5.2
[17] fastmap_1.2.0 XVector_0.44.0
[19] utf8_1.2.4 Rsamtools_2.20.0
[21] promises_1.3.0 rmarkdown_2.27
[23] UCSC.utils_1.0.0 ps_1.7.6
[25] purrr_1.0.2 bit_4.0.5
[27] xfun_0.44 zlibbioc_1.50.0
[29] cachem_1.1.0 jsonlite_1.8.8
[31] blob_1.2.4 later_1.3.2
[33] DelayedArray_0.30.0 BiocParallel_1.38.0
[35] parallel_4.4.0 R6_2.5.1
[37] bslib_0.7.0 stringi_1.8.4
[39] rtracklayer_1.64.0 jquerylib_0.1.4
[41] SummarizedExperiment_1.34.0 Rcpp_1.0.12
[43] knitr_1.46 mixtools_2.0.0
[45] httpuv_1.6.15 Matrix_1.7-0
[47] splines_4.4.0 tidyselect_1.2.1
[49] abind_1.4-5 rstudioapi_0.16.0
[51] yaml_2.3.8 codetools_0.2-20
[53] curl_5.2.1 processx_3.8.4
[55] lattice_0.22-6 tibble_3.2.1
[57] KEGGREST_1.44.0 evaluate_0.23
[59] survival_3.6-4 proxy_0.4-27
[61] kernlab_0.9-32 Biostrings_2.72.0
[63] pillar_1.9.0 MatrixGenerics_1.16.0
[65] whisker_0.4.1 KernSmooth_2.23-24
[67] plotly_4.10.4 generics_0.1.3
[69] RCurl_1.98-1.14 rprojroot_2.0.4
[71] ggplot2_3.5.1 munsell_0.5.1
[73] scales_1.3.0 class_7.3-22
[75] glue_1.7.0 lazyeval_0.2.2
[77] tools_4.4.0 BiocIO_1.14.0
[79] data.table_1.15.4 GenomicAlignments_1.40.0
[81] XML_3.99-0.16.1 fs_1.6.4
[83] grid_4.4.0 tidyr_1.3.1
[85] colorspace_2.1-0 nlme_3.1-164
[87] GenomeInfoDbData_1.2.12 restfulr_0.0.15
[89] cli_3.6.2 fansi_1.0.6
[91] S4Arrays_1.4.1 segmented_2.1-0
[93] viridisLite_0.4.2 gtable_0.3.5
[95] sass_0.4.9 digest_0.6.35
[97] SparseArray_1.4.1 rjson_0.2.21
[99] htmlwidgets_1.6.4 memoise_2.0.1
[101] htmltools_0.5.8.1 lifecycle_1.0.4
[103] httr_1.4.7 bit64_4.0.5
[105] MASS_7.3-60.2