Last updated: 2018-08-14

library(mashr)
Loading required package: ashr
library(knitr)
library(kableExtra)
source('../code/estimate_cor.R')
source('../code/generateDataV.R')
source('../code/summary.R')

EM

We use EM algorithm to update \rho.

E step

\[ P(\hat{B},B,Z|\rho, \pi) = \prod_{i=1}^{n} \prod_{k=0}^{K}\left[\pi_{k}N(\hat{b}_{i}; b_{i}, V)N(b_{i}; 0, U_{k})\right]^{\mathbb{I}(z_{i}=k)} \]

\[ \mathbb{E}_{Z,B|\hat{B}} \log P(\hat{B},B,Z|\rho, \pi) = \sum_{i=1}^{n} \sum_{k=0}^{K} P(z_{i}=k|\hat{b}_{i})\left[ \log \pi_{k} + \mathbb{E}_{B|\hat{B}}(\log N(\hat{b}_{i}; b_{i}, V)) + \mathbb{E}_{B|\hat{B}}(\log N(b_{i}; 0, U_{k})) \right] \]

\[ \begin{align*} \log N(\hat{b}_{i}; b_{i}, V) + \log N(b_{i}; 0, U_{k}) &= -\frac{p}{2}\log 2\pi -\frac{1}{2}\log |V| - \frac{1}{2}(\hat{b}_{i}-b_{i})^{T}V^{-1}(\hat{b}_{i}-b_{i}) -\frac{p}{2}\log 2\pi -\frac{1}{2}\log |U_{k}| - \frac{1}{2}b_{i}^{T}U_{k}^{-1}b_{i} \\ &= -p\log 2\pi -\frac{1}{2}\log |U_{k}| -\frac{1}{2}\log |V| - \frac{1}{2}\hat{b}_{i}^{T}V^{-1}\hat{b}_{i} + \hat{b}_{i}^{T}V^{-1}b_{i} -\frac{1}{2}b_{i}^{T}V^{-1}b_{i} - \frac{1}{2}b_{i}^{T}U_{k}^{-1}b_{i} \\ \mathbb{E}_{b_{i}|\hat{b}_{i}}\left[ \log N(\hat{b}_{i}; b_{i}, V) + \log N(b_{i}; 0, U_{k}) \right] &= -p\log 2\pi -\frac{1}{2}\log |U_{k}| -\frac{1}{2}\log |V| - \frac{1}{2}\hat{b}_{i}^{T}V^{-1}\hat{b}_{i} + \hat{b}_{i}^{T}V^{-1}\mathbb{E}(b_{i}|\hat{b}_{i}) -\frac{1}{2}tr\left(V^{-1}\mathbb{E}(b_{i}b_{i}^{T}|\hat{b}_{i}) \right) - \frac{1}{2}tr\left(U_{k}^{-1}\mathbb{E}(b_{i}b_{i}^{T}|\hat{b}_{i}) \right) \end{align*} \] \[ V = \left( \begin{matrix}1 & \rho \\ \rho & 1 \end{matrix} \right) \] Let \(\mu_{i} = \mathbb{E}(b_{i}|\hat{b}_{i})\) \[ \begin{align*} \mathbb{E}_{b_{i}|\hat{b}_{i}}\left[ \log N(\hat{b}_{i}; b_{i}, V) + \log N(b_{i}; 0, U_{k}) \right] &= -2\log 2\pi -\frac{1}{2}\log |U_{k}| -\frac{1}{2}\log(1-\rho^2) - \frac{1}{2(1-\rho^2)}\left(\hat{b}_{i1}^2 + \hat{b}_{i2}^2 -2\hat{b}_{i1} \mu_{i1} -2\hat{b}_{i2} \mu_{i2} + \mathbb{E}(b_{i1}^2|\hat{b}_{i}) + \mathbb{E}(b_{i2}^2|\hat{b}_{i}) - 2\hat{b}_{i1}\hat{b}_{i2}\rho + 2 \hat{b}_{i1}\mu_{i2}\rho +2\hat{b}_{i2}\mu_{i1}\rho - 2\rho\mathbb{E}(b_{i1}b_{i2}|\hat{b}_{i}) \right) - \frac{1}{2}tr\left(U_{k}^{-1}\mathbb{E}(b_{i}b_{i}^{T}|\hat{b}_{i}) \right) \end{align*} \]

\[ \gamma_{Z_{i}}(k) = P(z_{i}=k|X_{i}) = \frac{\pi_{k}N(x_{i}; 0, V+U_{k})}{\sum_{k'=0}^{K}\pi_{k'}N(x_{i}; 0, V + U_{k'})} \]

M step

\(V\): \[ \begin{align*} f(V^{-1}) = \sum_{i=1}^{n} \sum_{k=0}^{K} \gamma_{Z_{i}}(k)\left[ -p\log 2\pi -\frac{1}{2}\log |U_{k}| -\frac{1}{2}\log |V| - \frac{1}{2}\hat{b}_{i}^{T}V^{-1}\hat{b}_{i} + \hat{b}_{i}^{T}V^{-1}\mathbb{E}(b_{i}|\hat{b}_{i}) -\frac{1}{2}tr\left(V^{-1}\mathbb{E}(b_{i}b_{i}^{T}|\hat{b}_{i}) \right) - \frac{1}{2}tr\left(U_{k}^{-1}\mathbb{E}(b_{i}b_{i}^{T}|\hat{b}_{i}) \right) \right] \end{align*} \]

\[ \begin{align*} f(V^{-1})' &= \sum_{i=1}^{n} \sum_{k=0}^{K} \gamma_{Z_{i}}(k)\left[ \frac{1}{2}V - \frac{1}{2}\hat{b}_{i}\hat{b}_{i}^{T} + \mathbb{E}(b_{i}|\hat{b}_{i})\hat{b}_{i}^{T} - \frac{1}{2} \mathbb{E}(b_{i}b_{i}^{T}|\hat{b}_{i}) \right] = 0 \\ \frac{1}{2}Vn &= \sum_{i=1}^{n} \sum_{k=0}^{K} \gamma_{Z_{i}}(k)\left[\frac{1}{2}\hat{b}_{i}\hat{b}_{i}^{T} - \mathbb{E}(b_{i}|\hat{b}_{i})\hat{b}_{i}^{T} + \frac{1}{2} \mathbb{E}(b_{i}b_{i}^{T}|\hat{b}_{i}) \right] \\ \hat{V} &= \frac{1}{n} \sum_{i=1}^{n} \left[\hat{b}_{i}\hat{b}_{i}^{T} - 2\mathbb{E}(b_{i}|\hat{b}_{i})\hat{b}_{i}^{T} + \mathbb{E}(b_{i}b_{i}^{T}|\hat{b}_{i}) \right] \end{align*} \]

\(\rho\): \[ f(\rho) = \sum_{i=1}^{n} \sum_{k=1}^{K} \gamma_{Z_{i}}(k)\left[-2\log 2\pi -\frac{1}{2}\log |U_{k}| -\frac{1}{2}\log(1-\rho^2) - \frac{1}{2(1-\rho^2)}\left(\hat{b}_{i1}^2 + \hat{b}_{i2}^2 -2\hat{b}_{i1} \mu_{i1} -2\hat{b}_{i2} \mu_{i2} + \mathbb{E}(b_{i1}^2|\hat{b}_{i}) + \mathbb{E}(b_{i2}^2|\hat{b}_{i}) - 2\hat{b}_{i1}\hat{b}_{i2}\rho + 2 \hat{b}_{i1}\mu_{i2}\rho +2\hat{b}_{i2}\mu_{i1}\rho - 2\rho\mathbb{E}(b_{i1}b_{i2}|\hat{b}_{i}) \right) - \frac{1}{2}tr\left(U_{k}^{-1}\mathbb{E}(b_{i}b_{i}^{T}|\hat{b}_{i}) \right)\right] \]

\[ \begin{align*} f(\rho)' = \sum_{i=1}^{n} \sum_{k=1}^{K} \gamma_{Z_{i}}(k)\left[ \frac{\rho}{1-\rho^2} -\frac{\rho}{(1-\rho^2)^2}\left( \hat{b}_{i1}^2 + \hat{b}_{i2}^2 -2\hat{b}_{i1} \mu_{i1} -2\hat{b}_{i2} \mu_{i2} + \mathbb{E}(b_{i1}^2|\hat{b}_{i}) + \mathbb{E}(b_{i2}^2|\hat{b}_{i}) \right) -\frac{\rho^2+1}{(1-\rho^2)^2}\left( -\hat{b}_{i1}\hat{b}_{i2} + \hat{b}_{i1}\mu_{i2} +\hat{b}_{i2}\mu_{i1} - \mathbb{E}(b_{i1}b_{i2}|\hat{b}_{i}) \right) \right] &= 0 \\ \rho(1-\rho^2)n - \rho \sum_{i=1}^{n} \sum_{k=1}^{K} \gamma_{Z_{i}}(k) \left( \hat{b}_{i1}^2 + \hat{b}_{i2}^2 -2\hat{b}_{i1} \mu_{i1} -2\hat{b}_{i2} \mu_{i2} + \mathbb{E}(b_{i1}^2|\hat{b}_{i}) + \mathbb{E}(b_{i2}^2|\hat{b}_{i}) \right) - (\rho^2 + 1) \sum_{i=1}^{n} \sum_{k=1}^{K} \gamma_{Z_{i}}(k)\left( -\hat{b}_{i1}\hat{b}_{i2} + \hat{b}_{i1}\mu_{i2} +\hat{b}_{i2}\mu_{i1} - \mathbb{E}(b_{i1}b_{i2}|\hat{b}_{i}) \right) &= 0 \\ -n\rho^{3} - \rho^2 \sum_{i=1}^{n} \left( -\hat{b}_{i1}\hat{b}_{i2} + \hat{b}_{i1}\mu_{i2} +\hat{b}_{i2}\mu_{i1} - \mathbb{E}(b_{i1}b_{i2}|\hat{b}_{i}) \right) - \rho(\sum_{i=1}^{n} \left( \hat{b}_{i1}^2 + \hat{b}_{i2}^2 -2\hat{b}_{i1} \mu_{i1} -2\hat{b}_{i2} \mu_{i2} + \mathbb{E}(b_{i1}^2|\hat{b}_{i}) + \mathbb{E}(b_{i2}^2|\hat{b}_{i}) \right) - n) - \sum_{i=1}^{n} \left( -\hat{b}_{i1}\hat{b}_{i2} + \hat{b}_{i1}\mu_{i2} +\hat{b}_{i2}\mu_{i1} - \mathbb{E}(b_{i1}b_{i2}|\hat{b}_{i}) \right) &= 0 \end{align*} \]

The polynomial has either 1 or 3 real roots in (-1, 1).

Algorithm:

Input: X, Ulist, init_rho
Compute loglikelihood
delta = 1
while delta > tol
  Given rho, Estimate pi using convex method (current mash method)
  M step: update rho: find all roots of polynomial, if it has three real roots, choose the one with higher loglikelihood.
  Compute loglikelihood
  Update delta

Data

\[ \hat{\beta}|\beta \sim N_{2}(\hat{\beta}; \beta, \left(\begin{matrix} 1 & 0.5 \\ 0.5 & 1 \end{matrix}\right)) \]

\[ \beta \sim \frac{1}{4}\delta_{0} + \frac{1}{4}N_{2}(0, \left(\begin{matrix} 1 & 0 \\ 0 & 0 \end{matrix}\right)) + \frac{1}{4}N_{2}(0, \left(\begin{matrix} 0 & 0 \\ 0 & 1 \end{matrix}\right)) + \frac{1}{4}N_{2}(0, \left(\begin{matrix} 1 & 1 \\ 1 & 1 \end{matrix}\right)) \]

n = 4000

set.seed(1)
n = 4000; p = 2
Sigma = matrix(c(1,0.5,0.5,1),p,p)
U0 = matrix(0,2,2)
U1 = U0; U1[1,1] = 1
U2 = U0; U2[2,2] = 1
U3 = matrix(1,2,2)
Utrue = list(U0=U0, U1=U1, U2=U2, U3=U3)
data = generate_data(n, p, Sigma, Utrue)
m.data = mash_set_data(data$Bhat, data$Shat)
U.c = cov_canonical(m.data)
grid = mashr:::autoselect_grid(m.data, sqrt(2))
Ulist = mashr:::normalize_Ulist(U.c)
xUlist = mashr:::expand_cov(Ulist,grid,usepointmass =  TRUE)
result <- mixture.EM2.times(data$Bhat, xUlist, init_rho = c(-0.7,0,0.7), grid=1)
plot(result$result$log_liks)

The estimated \(\rho\) is 0.5576293.

m.data.em = mash_set_data(data$Bhat, data$Shat, V = matrix(c(1,result[[1]]$rho,result[[1]]$rho,1),2,2))
U.c = cov_canonical(m.data.em)
m.em = mash(m.data.em, U.c, verbose= FALSE)
null.ind = which(apply(data$B,1,sum) == 0)

The log likelihood is -1.23021110^{4}. There are 37 significant samples, 1 false positives. The RRMSE is 0.5871084.

The estimated pi is

barplot(get_estimated_pi(m.em), las=2, cex.names = 0.7, main='OverEst', ylim=c(0,0.8))

The ROC curve:

m.data.correct = mash_set_data(data$Bhat, data$Shat, V=Sigma)
m.correct = mash(m.data.correct, U.c, verbose = FALSE)
m.correct.seq = ROC.table(data$B, m.correct)
m.em.seq = ROC.table(data$B, m.em)

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] kableExtra_0.9.0 knitr_1.20       mashr_0.2-11     ashr_2.2-10     

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.18      compiler_3.5.1    pillar_1.3.0     
 [4] plyr_1.8.4        iterators_1.0.10  tools_3.5.1      
 [7] digest_0.6.15     viridisLite_0.3.0 evaluate_0.11    
[10] tibble_1.4.2      lattice_0.20-35   pkgconfig_2.0.1  
[13] rlang_0.2.1       Matrix_1.2-14     foreach_1.4.4    
[16] rstudioapi_0.7    yaml_2.2.0        parallel_3.5.1   
[19] mvtnorm_1.0-8     xml2_1.2.0        httr_1.3.1       
[22] stringr_1.3.1     REBayes_1.3       hms_0.4.2        
[25] rprojroot_1.3-2   grid_3.5.1        R6_2.2.2         
[28] rmarkdown_1.10    rmeta_3.0         readr_1.1.1      
[31] magrittr_1.5      scales_0.5.0      backports_1.1.2  
[34] codetools_0.2-15  htmltools_0.3.6   MASS_7.3-50      
[37] rvest_0.3.2       assertthat_0.2.0  colorspace_1.3-2 
[40] stringi_1.2.4     Rmosek_8.0.69     munsell_0.5.0    
[43] pscl_1.5.2        doParallel_1.0.11 truncnorm_1.0-8  
[46] SQUAREM_2017.10-1 crayon_1.3.4     

This R Markdown site was created with workflowr