Last updated: 2018-11-24

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(1)

    The command set.seed(1) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: c8ad3d1

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/.DS_Store
        Ignored:    analysis/.Rhistory
        Ignored:    analysis/include/.DS_Store
        Ignored:    code/.DS_Store
        Ignored:    data/.DS_Store
        Ignored:    docs/.DS_Store
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  analysis/Classify.Rmd
        Untracked:  analysis/EstimateCorMaxGD.Rmd
        Untracked:  analysis/HierarchicalFlashSim.Rmd
        Untracked:  analysis/MashLowSignalGTEx4.Rmd
        Untracked:  analysis/Mash_GTEx.Rmd
        Untracked:  analysis/MeanAsh.Rmd
        Untracked:  analysis/OutlierDetection.Rmd
        Untracked:  analysis/OutlierDetection2.Rmd
        Untracked:  analysis/OutlierDetection3.Rmd
        Untracked:  analysis/OutlierDetection4.Rmd
        Untracked:  analysis/mash_missing_row.Rmd
        Untracked:  code/GTExNullModel.R
        Untracked:  code/MashClassify.R
        Untracked:  code/MashCorResult.R
        Untracked:  code/MashCormVResult.R
        Untracked:  code/MashNULLCorResult.R
        Untracked:  code/MashSource.R
        Untracked:  code/Weight_plot.R
        Untracked:  code/addemV.R
        Untracked:  code/estimate_cor.R
        Untracked:  code/generateDataV.R
        Untracked:  code/johnprocess.R
        Untracked:  code/mV.R
        Untracked:  code/sim_mean_sig.R
        Untracked:  code/summary.R
        Untracked:  data/Blischak_et_al_2015/
        Untracked:  data/scale_data.rds
        Untracked:  docs/figure/Classify.Rmd/
        Untracked:  docs/figure/OutlierDetection.Rmd/
        Untracked:  docs/figure/OutlierDetection2.Rmd/
        Untracked:  docs/figure/OutlierDetection3.Rmd/
        Untracked:  docs/figure/Test.Rmd/
        Untracked:  docs/figure/mash_missing_whole_row_5.Rmd/
        Untracked:  docs/include/
        Untracked:  output/AddEMV/
        Untracked:  output/CovED_UKBio_strong.rds
        Untracked:  output/CovED_UKBio_strong_Z.rds
        Untracked:  output/Flash_UKBio_strong.rds
        Untracked:  output/GTExNULLres/
        Untracked:  output/GTEx_2.5_nullData.rds
        Untracked:  output/GTEx_2.5_nullModel.rds
        Untracked:  output/GTEx_2.5_nullPermData.rds
        Untracked:  output/GTEx_2.5_nullPermModel.rds
        Untracked:  output/GTEx_3.5_nullData.rds
        Untracked:  output/GTEx_3.5_nullModel.rds
        Untracked:  output/GTEx_3.5_nullPermData.rds
        Untracked:  output/GTEx_3.5_nullPermModel.rds
        Untracked:  output/GTEx_3_nullData.rds
        Untracked:  output/GTEx_3_nullModel.rds
        Untracked:  output/GTEx_3_nullPermData.rds
        Untracked:  output/GTEx_3_nullPermModel.rds
        Untracked:  output/GTEx_4.5_nullData.rds
        Untracked:  output/GTEx_4.5_nullModel.rds
        Untracked:  output/GTEx_4.5_nullPermData.rds
        Untracked:  output/GTEx_4.5_nullPermModel.rds
        Untracked:  output/GTEx_4_nullData.rds
        Untracked:  output/GTEx_4_nullModel.rds
        Untracked:  output/GTEx_4_nullPermData.rds
        Untracked:  output/GTEx_4_nullPermModel.rds
        Untracked:  output/MASH.10.em2.result.rds
        Untracked:  output/MASH.10.mle.result.rds
        Untracked:  output/MashCorSim--midway/
        Untracked:  output/Mash_EE_Cov_0_plusR1.rds
        Untracked:  output/UKBio_mash_model.rds
        Untracked:  output/mVIterations/
        Untracked:  output/mVUlist/
        Untracked:  output/mVsubset/
        Untracked:  output/result.em.rds
    
    Unstaged changes:
        Modified:   analysis/Mash_UKBio.Rmd
        Modified:   analysis/mash_missing_samplesize.Rmd
        Modified:   output/Flash_T2_0.rds
        Modified:   output/Flash_T2_0_mclust.rds
        Modified:   output/Mash_model_0_plusR1.rds
        Modified:   output/PresiAddVarCol.rds
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd c8ad3d1 zouyuxin 2018-11-24 wflow_publish(“analysis/EstimateCorMaxMVSample.Rmd”)
    html f6de863 zouyuxin 2018-11-24 Build site.
    Rmd c09cb2a zouyuxin 2018-11-24 wflow_publish(“analysis/EstimateCorMaxMVSample.Rmd”)


library(mashr)
Loading required package: ashr
library(ggplot2)
library(knitr)
library(kableExtra)
source('../code/generateDataV.R')

Data

Simple simulation in \(R^2\): \[ \hat{\beta}|\beta \sim N_{2}(\hat{\beta}; \beta, \left(\begin{matrix} 1 & 0.5 \\ 0.5 & 1 \end{matrix}\right)) \]

\[ \beta \sim \frac{1}{4}\delta_{0} + \frac{1}{4}N_{2}(0, \left(\begin{matrix} 1 & 0 \\ 0 & 0 \end{matrix}\right)) + \frac{1}{4}N_{2}(0, \left(\begin{matrix} 0 & 0 \\ 0 & 1 \end{matrix}\right)) + \frac{1}{4}N_{2}(0, \left(\begin{matrix} 1 & 1 \\ 1 & 1 \end{matrix}\right)) \]

set.seed(1)
n = 4000; p = 2
Sigma = matrix(c(1,0.5,0.5,1),p,p)
U0 = matrix(0,2,2)
U1 = U0; U1[1,1] = 1
U2 = U0; U2[2,2] = 1
U3 = matrix(1,2,2)
Utrue = list(U0=U0, U1=U1, U2=U2, U3=U3)
data = generate_data(n, p, Sigma, Utrue)
m.data = mash_set_data(data$Bhat, data$Shat)
U.c = cov_canonical(m.data)
samples = sample(1:n, 1000)
m.data.subset = mash_set_data(Bhat = data$Bhat[samples,], Shat = data$Shat)

Full data vs Subset

result.mV.full <- estimate_null_correlation(m.data, U.c, tol=1e-3)
result.mV.subset <- estimate_null_correlation(m.data.subset, U.c, tol=1e-3)

Fit full mash model using estimated V

m.data.subset.V = mash_update_data(m.data, V=result.mV.subset$V)
model.subset = mash(m.data.subset.V, U.c)
 - Computing 4000 x 106 likelihood matrix.
 - Likelihood calculations took 0.04 seconds.
 - Fitting model with 106 mixture components.
 - Model fitting took 0.35 seconds.
 - Computing posterior matrices.
 - Computation allocated took 0.03 seconds.
logliks = rbind(c(get_loglik(result.mV.full$mash.model), get_loglik(model.subset)))
colnames(logliks) = c('Full','Subset')
logliks %>% kable() %>% kable_styling()
Full Subset
-12302.53 -12302.42

More simulations

I randomly generate 10 positive definite correlation matrices, V. The sample size is 4000.

\[ \hat{b}_{j}|b_{j} \sim N_{5}(z, S_{j}VS_{j}) \] \[ b_{j}\sim\frac{1}{4}\delta_{0} + \frac{1}{4}N_{5}(0,\left(\begin{matrix} 1 & \mathbf{0}_{1\times 4} \\ \mathbf{0}_{4\times 1} & \mathbf{0}_{4\times 4} \end{matrix}\right)) + \frac{1}{4}N_{5}(0,\left(\begin{matrix} \mathbf{1}_{2\times 2} & \mathbf{0}_{1\times 3} \\ \mathbf{0}_{3\times 1} & \mathbf{0}_{3\times 3} \end{matrix}\right)) + \frac{1}{4}N_{5}(0,\mathbf{1}_{5\times 5}) \]

set.seed(20181124)
n=4000; p = 5
U0 = matrix(0,p,p)
U1 = U0; U1[1,1] = 1
U2 = U0; U2[c(1:2), c(1:2)] = 1
U3 = matrix(1, p,p)
Utrue = list(U0 = U0, U1 = U1, U2 = U2, U3 = U3)

for(t in 1:10){
  print(paste0('Data: ', t))
  Vtrue = clusterGeneration::rcorrmatrix(p)
  data = generate_data(n, p, Vtrue, Utrue)
  # mash cov
  m.data = mash_set_data(Bhat = data$Bhat, Shat = data$Shat)
  m.1by1 = mash_1by1(m.data)
  strong = get_significant_results(m.1by1)

  U.pca = cov_pca(m.data, 3, subset = strong)
  U.ed = cov_ed(m.data, U.pca, subset = strong)
  U.c = cov_canonical(m.data)
  
  samples = sample(1:n, 1000)
  m.data.subset = mash_set_data(Bhat = data$Bhat[samples,], Shat = data$Shat)
  print('Method: mV')
  print('Full')
  Vhat.full <- estimate_null_correlation(m.data, c(U.c, U.ed),
                        tol=1e-3, max_iter = 5)
  print('Subset')
  Vhat.subset <- estimate_null_correlation(m.data.subset, c(U.c, U.ed),
                        tol=1e-3, max_iter = 5)
  m.data.subset.V = mash_update_data(m.data, V = Vhat.subset$V)
  model.subset = mash(m.data.subset.V, c(U.c,U.ed))
  saveRDS(list(V.true = Vtrue, V.mV.Full = Vhat.full, V.mV.subset = Vhat.subset, 
               model.subset = model.subset, data = data, strong=strong),
          paste0('../output/mVsubset/MASH.mV.subset.result.',t,'.rds'))
}
files = dir("../output/mVsubset/"); files = files[grep("MASH.mV.subset.result",files)]
times = length(files)
result = vector(mode="list",length = times)
for(i in 1:times) {
  result[[i]] = readRDS(paste("../output/mVsubset/", files[[i]], sep=""))
}
result_wrap = vector("list", times) 
for(i in 1:times){
  m.data = mash_set_data(result[[i]]$data$Bhat, result[[i]]$data$Shat)
  m.1by1 = mash_1by1(m.data)
  strong = get_significant_results(m.1by1)

  U.c = cov_canonical(m.data)
  U.pca = cov_pca(m.data, 3, subset = strong)
  U.ed = cov_ed(m.data, U.pca, subset = strong)

  m.data.true = mash_set_data(Bhat = m.data$Bhat, Shat = m.data$Shat, V = result[[i]]$V.true)
  m.model.true = mash(m.data.true, c(U.c,U.ed), verbose = FALSE)
  
  # mV
  result_wrap[[i]]$V.true = result[[i]]$V.true
  result_wrap[[i]]$V.full = result[[i]]$V.mV.Full$V
  result_wrap[[i]]$V.subset = result[[i]]$V.mV.subset$V
  
  result_wrap[[i]]$m.model = list(m.model.true = m.model.true, m.model.full = result[[i]]$V.mV.Full$mash.model,
                             m.model.subset = result[[i]]$model.subset)
}

Error

The Frobenius norm is

norm.type='F'
temp = matrix(0,nrow = times, ncol = 2)
for(i in 1:times){
  temp[i, ] = c(norm(result_wrap[[i]]$V.full - result_wrap[[i]]$V.true, type = norm.type), 
                norm(result_wrap[[i]]$V.subset - result_wrap[[i]]$V.true, type = norm.type))
}
colnames(temp) = c('Full','Subset')
temp = reshape2::melt(temp[])
colnames(temp) = c('Data', 'Method', 'FrobError')
ggplot(temp, aes(x = Data, y=FrobError, group = Method, color = Method)) + geom_line()

Expand here to see past versions of unnamed-chunk-11-1.png:
Version Author Date
f6de863 zouyuxin 2018-11-24

The spectral norm is

norm.type='2'
temp = matrix(0,nrow = times, ncol = 2)
for(i in 1:times){
  temp[i, ] = c(norm(result_wrap[[i]]$V.full - result_wrap[[i]]$V.true, type = norm.type), 
                norm(result_wrap[[i]]$V.subset - result_wrap[[i]]$V.true, type = norm.type))
}
colnames(temp) = c('Full','Subset')
temp = reshape2::melt(temp[])
colnames(temp) = c('Data', 'Method', 'SpecError')
ggplot(temp, aes(x = Data, y=SpecError, group = Method, color = Method)) + geom_line()

Expand here to see past versions of unnamed-chunk-12-1.png:
Version Author Date
f6de863 zouyuxin 2018-11-24

mash log likelihood

temp = matrix(0,nrow = times, ncol = 3)
for(i in 1:times){
  temp[i, ] = c(get_loglik(result_wrap[[i]]$m.model$m.model.true), get_loglik(result_wrap[[i]]$m.model$m.model.full),
                get_loglik(result_wrap[[i]]$m.model$m.model.subset))
}
colnames(temp) = c('True', 'Full','Subset')
temp = reshape2::melt(temp)
colnames(temp) = c('Data', 'Method', 'loglikelihood')
ggplot(temp, aes(x = Data, y=loglikelihood, group = Method, color = Method)) + geom_line()

ROC

ROC.table = function(data, model){
  sign.test = data*model$result$PosteriorMean
  thresh.seq = seq(0, 1, by=0.005)[-1]
  m.seq = matrix(0,length(thresh.seq), 2)
  colnames(m.seq) = c('TPR', 'FPR')
  for(t in 1:length(thresh.seq)){
    m.seq[t,] = c(sum(sign.test>0 & model$result$lfsr <= thresh.seq[t])/sum(data!=0),
                  sum(data==0 & model$result$lfsr <=thresh.seq[t])/sum(data==0))
  }
  return(m.seq)
}
plotROC = function(data.true, result.model, title){
  m.full.seq = ROC.table(data.true, result.model$m.model.full)
  m.subset.seq = ROC.table(data.true, result.model$m.model.subset)
  m.true.seq = ROC.table(data.true, result.model$m.model.true)

  plot(m.true.seq[,'FPR'], m.true.seq[,'TPR'],type='l',xlab = 'FPR', ylab='TPR',
       main=paste0(title, 'True Pos vs False Pos'), cex=1.5, lwd = 1.5)
  lines(m.full.seq[,'FPR'], m.full.seq[,'TPR'], col='red', lwd = 1.5)
  lines(m.subset.seq[,'FPR'], m.subset.seq[,'TPR'], col='darkorchid', lwd = 1.5)
  legend('bottomright', c('True','Full', 'Subset'),col=c('black','red','darkorchid'),
           lty=c(1,1,1), lwd=c(1.5,1.5,1.5))
}
par(mfrow=c(1,2))
for(i in 1:times){
  plotROC(result[[i]]$data$B, result_wrap[[i]]$m.model, title=paste0('Data', i, ' '))
}

RRMSE

RRMSE = function(datatrue, dataobs, model){
  model = Filter(length, model)
  rrmse = numeric(length(model))
  for(k in 1:length(model)){
    rrmse[k] = sqrt(mean((datatrue - model[[k]]$result$PosteriorMean)^2)/mean((datatrue - dataobs)^2))
  }
  rrmse = as.matrix(t(rrmse))
  colnames(rrmse) = names(model)
  return(rrmse)
}
par(mfrow=c(1,2))
for(i in 1:times){
  rrmse = rbind(RRMSE(result[[i]]$data$B, result[[i]]$data$Bhat, result_wrap[[i]]$m.model))
  barplot(rrmse, ylim=c(0,(1+max(rrmse))/2), las=2, cex.names = 0.7, main='RRMSE')
}

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] kableExtra_0.9.0  knitr_1.20        ggplot2_3.1.0     mashr_0.2.18.0536
[5] ashr_2.2-23      

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.5  reshape2_1.4.3    purrr_0.2.5      
 [4] lattice_0.20-35   Rmosek_8.0.69     colorspace_1.3-2 
 [7] viridisLite_0.3.0 htmltools_0.3.6   yaml_2.2.0       
[10] rlang_0.3.0.1     R.oo_1.22.0       pillar_1.3.0     
[13] glue_1.3.0        withr_2.1.2       R.utils_2.7.0    
[16] REBayes_1.3       bindrcpp_0.2.2    foreach_1.4.4    
[19] plyr_1.8.4        bindr_0.1.1       stringr_1.3.1    
[22] munsell_0.5.0     gtable_0.2.0      workflowr_1.1.1  
[25] rvest_0.3.2       R.methodsS3_1.7.1 mvtnorm_1.0-8    
[28] codetools_0.2-15  evaluate_0.12     labeling_0.3     
[31] pscl_1.5.2        doParallel_1.0.14 parallel_3.5.1   
[34] highr_0.7         Rcpp_1.0.0        readr_1.1.1      
[37] scales_1.0.0      backports_1.1.2   rmeta_3.0        
[40] truncnorm_1.0-8   abind_1.4-5       hms_0.4.2        
[43] digest_0.6.18     stringi_1.2.4     dplyr_0.7.6      
[46] grid_3.5.1        rprojroot_1.3-2   tools_3.5.1      
[49] magrittr_1.5      lazyeval_0.2.1    tibble_1.4.2     
[52] crayon_1.3.4      whisker_0.3-2     pkgconfig_2.0.2  
[55] MASS_7.3-50       Matrix_1.2-14     xml2_1.2.0       
[58] SQUAREM_2017.10-1 httr_1.3.1        assertthat_0.2.0 
[61] rmarkdown_1.10    rstudioapi_0.8    iterators_1.0.10 
[64] R6_2.3.0          git2r_0.23.0      compiler_3.5.1   

This reproducible R Markdown analysis was created with workflowr 1.1.1