Last updated: 2018-10-22

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(1)

    The command set.seed(1) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 6a7014a

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/.DS_Store
        Ignored:    analysis/.Rhistory
        Ignored:    analysis/include/.DS_Store
        Ignored:    code/.DS_Store
        Ignored:    data/.DS_Store
        Ignored:    docs/.DS_Store
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  analysis/Classify.Rmd
        Untracked:  analysis/EstimateCorMaxEMGD.Rmd
        Untracked:  analysis/EstimateCorMaxGD.Rmd
        Untracked:  analysis/EstimateCorPrior.Rmd
        Untracked:  analysis/EstimateCorSol.Rmd
        Untracked:  analysis/HierarchicalFlashSim.Rmd
        Untracked:  analysis/MashLowSignalGTEx4.Rmd
        Untracked:  analysis/Mash_GTEx.Rmd
        Untracked:  analysis/MeanAsh.Rmd
        Untracked:  analysis/OutlierDetection.Rmd
        Untracked:  analysis/OutlierDetection2.Rmd
        Untracked:  analysis/OutlierDetection3.Rmd
        Untracked:  analysis/OutlierDetection4.Rmd
        Untracked:  analysis/mash_missing_row.Rmd
        Untracked:  code/GTExNullModel.R
        Untracked:  code/MashClassify.R
        Untracked:  code/MashCorResult.R
        Untracked:  code/MashCormVResult.R
        Untracked:  code/MashNULLCorResult.R
        Untracked:  code/MashSource.R
        Untracked:  code/Weight_plot.R
        Untracked:  code/addemV.R
        Untracked:  code/estimate_cor.R
        Untracked:  code/generateDataV.R
        Untracked:  code/johnprocess.R
        Untracked:  code/mV.R
        Untracked:  code/sim_mean_sig.R
        Untracked:  code/summary.R
        Untracked:  data/Blischak_et_al_2015/
        Untracked:  data/scale_data.rds
        Untracked:  docs/figure/Classify.Rmd/
        Untracked:  docs/figure/OutlierDetection.Rmd/
        Untracked:  docs/figure/OutlierDetection2.Rmd/
        Untracked:  docs/figure/OutlierDetection3.Rmd/
        Untracked:  docs/figure/Test.Rmd/
        Untracked:  docs/figure/mash_missing_whole_row_5.Rmd/
        Untracked:  docs/include/
        Untracked:  output/AddEMV/
        Untracked:  output/CovED_UKBio_strong.rds
        Untracked:  output/CovED_UKBio_strong_Z.rds
        Untracked:  output/Flash_UKBio_strong.rds
        Untracked:  output/GTExNULLres/
        Untracked:  output/GTEx_2.5_nullData.rds
        Untracked:  output/GTEx_2.5_nullModel.rds
        Untracked:  output/GTEx_2.5_nullPermData.rds
        Untracked:  output/GTEx_2.5_nullPermModel.rds
        Untracked:  output/GTEx_3.5_nullData.rds
        Untracked:  output/GTEx_3.5_nullModel.rds
        Untracked:  output/GTEx_3.5_nullPermData.rds
        Untracked:  output/GTEx_3.5_nullPermModel.rds
        Untracked:  output/GTEx_3_nullData.rds
        Untracked:  output/GTEx_3_nullModel.rds
        Untracked:  output/GTEx_3_nullPermData.rds
        Untracked:  output/GTEx_3_nullPermModel.rds
        Untracked:  output/GTEx_4.5_nullData.rds
        Untracked:  output/GTEx_4.5_nullModel.rds
        Untracked:  output/GTEx_4.5_nullPermData.rds
        Untracked:  output/GTEx_4.5_nullPermModel.rds
        Untracked:  output/GTEx_4_nullData.rds
        Untracked:  output/GTEx_4_nullModel.rds
        Untracked:  output/GTEx_4_nullPermData.rds
        Untracked:  output/GTEx_4_nullPermModel.rds
        Untracked:  output/MASH.10.em2.result.rds
        Untracked:  output/MASH.10.mle.result.rds
        Untracked:  output/MashCorSim--midway/
        Untracked:  output/Mash_EE_Cov_0_plusR1.rds
        Untracked:  output/UKBio_mash_model.rds
        Untracked:  output/mVIterations/
        Untracked:  output/mVUlist/
        Untracked:  output/result.em.rds
    
    Unstaged changes:
        Modified:   analysis/EstimateCorMaxEM2.Rmd
        Modified:   analysis/Mash_UKBio.Rmd
        Modified:   analysis/mash_missing_samplesize.Rmd
        Modified:   output/Flash_T2_0.rds
        Modified:   output/Flash_T2_0_mclust.rds
        Modified:   output/Mash_model_0_plusR1.rds
        Modified:   output/PresiAddVarCol.rds
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 6a7014a zouyuxin 2018-10-22 wflow_publish(“analysis/EstimateCorMaxMV.Rmd”)
    html 8f39f1c zouyuxin 2018-10-09 Build site.
    Rmd 52d66f3 zouyuxin 2018-10-09 wflow_publish(“analysis/EstimateCorMaxMV.Rmd”)
    html 4e61be5 zouyuxin 2018-10-09 Build site.
    Rmd cd82d7e zouyuxin 2018-10-09 wflow_publish(“analysis/EstimateCorMaxMV.Rmd”)
    html e3b067e zouyuxin 2018-10-09 Build site.
    Rmd 032212c zouyuxin 2018-10-09 wflow_publish(“analysis/EstimateCorMaxMV.Rmd”)


library(mashr)
Loading required package: ashr
source('../code/generateDataV.R')
source('../code/summary.R')

We use EM algorithm to update \(\rho\).

B is the \(n\times R\) true value matrix. \(\mathbf{z}\) is a length n vector.

E step

\[ P(\hat{B},B|\rho, \pi) = \prod_{i=1}^{n} \left[N(\hat{b}_{i}; b_{i}, S_{i}VS_{i})\sum_{p=0}^{P} \pi_{p} N(b_{i}; 0, \Sigma_{p})\right] \]

\[ \begin{align*} \mathbb{E}_{B|\hat{B}} \log P(\hat{B},B|\rho, \pi) &= \sum_{i=1}^{n} \mathbb{E}_{b_{i}|\hat{b}_{i}}\left[ \log N(\hat{b}_{i}; b_{i}, S_{i}VS_{i}) + \log \sum_{p=0}^{P} \pi_{p} N(b_{i}; 0, \Sigma_{p}) \right] \\ &= \sum_{i=1}^{n} \mathbb{E}_{b_{i}|\hat{b}_{i}}\log N(\hat{b}_{i}; b_{i}, S_{i}VS_{i}) + \sum_{i=1}^{n}\mathbb{E}_{b_{i}|\hat{b}_{i}}\log \sum_{p=0}^{P} \pi_{p} N(b_{i}; 0, \Sigma_{p}) \end{align*} \]

\(V\) depends on the first term only. Let \(\mu_{i} = \mathbb{E}_{b_{i}|\hat{b}_{i}}(b_{i})\) \[ \begin{align*} \log N(\hat{b}_{i}; b_{i}, V) &= -\frac{R}{2}\log 2\pi -\frac{1}{2}\log |S_{i}VS_{i}| - \frac{1}{2}(\hat{b}_{i}-b_{i})^{T}S_{i}^{-1}V^{-1}S_{i}^{-1}(\hat{b}_{i}-b_{i}) \\ &= -\frac{R}{2}\log 2\pi -\frac{1}{2}\log |S_{i}VS_{i}| - \frac{1}{2}\hat{b}_{i}^{T}S_{i}^{-1}V^{-1}S_{i}^{-1}\hat{b}_{i} + \frac{1}{2}b_{i}^{T}S_{i}^{-1}V^{-1}S_{i}^{-1}\hat{b}_{i} + \frac{1}{2}\hat{b}_{i}^{T}S_{i}^{-1}V^{-1}S_{i}^{-1}b_{i} -\frac{1}{2}b_{i}^{T}S_{i}^{-1}V^{-1}S_{i}^{-1}b_{i} \\ \mathbb{E}_{b_{i}|\hat{b}_{i}} \log N(\hat{b}_{i}; b_{i}, V) &= -\frac{R}{2}\log 2\pi -\frac{1}{2}\log |S_{i}VS_{i}| - \frac{1}{2}\hat{b}_{i}^{T}S_{i}^{-1}V^{-1}S_{i}^{-1}\hat{b}_{i} + \frac{1}{2}\mu_{i}^{T}S_{i}^{-1}V^{-1}S_{i}^{-1}\hat{b}_{i} + \frac{1}{2}\hat{b}_{i}^{T}S_{i}^{-1}V^{-1}S_{i}^{-1}\mu_{i} -\frac{1}{2}tr(S_{i}^{-1}V^{-1}S_{i}^{-1}\mathbb{E}_{b_{i}|\hat{b}_{i}}(b_{i}b_{i}^{T})) \end{align*} \]

Maximize with respect to V:

We have constraint on V, the diagonal of V must be 1. Let \(V = DCD\), C is the covariance matrix, D = \(diag(1/sqrt(C_{jj}))\).

\[ f(C) = \sum_{i=1}^{n} -\frac{R}{2}\log 2\pi -\frac{1}{2}\log |C|- \log |DS_{i}| - \frac{1}{2}\hat{b}_{i}^{T}S_{i}^{-1}D^{-1}C^{-1}D^{-1}S_{i}^{-1}\hat{b}_{i} + \frac{1}{2}\mu_{i}^{T}S_{i}^{-1}D^{-1}C^{-1}D^{-1}S_{i}^{-1}\hat{b}_{i} + \frac{1}{2}\hat{b}_{i}^{T}S_{i}^{-1}D^{-1}C^{-1}D^{-1}S_{i}^{-1}\mu_{i} -\frac{1}{2}tr(S_{i}^{-1}D^{-1}C^{-1}D^{-1}S_{i}^{-1}\mathbb{E}_{b_{i}|\hat{b}_{i}}(b_{i}b_{i}^{T})) \]

\[ \begin{align*} f(C)' &= \sum_{i=1}^{n} -\frac{1}{2}C^{-1} + \frac{1}{2}C^{-1}D^{-1}S_{i}^{-1}\hat{b}_{i}\hat{b}_{i}^{T}S_{i}^{-1}D^{-1}C^{-1} - \frac{1}{2} C^{-1}D^{-1}S_{i}^{-1}\mu_{i}\hat{b}_{i}^{T}S_{i}^{-1}D^{-1}C^{-1} - \frac{1}{2}C^{-1}D^{-1}S_{i}^{-1}\hat{b}_{i}\mu_{i}^{T}S_{i}^{-1}D^{-1}C^{-1} + \frac{1}{2} C^{-1}D^{-1}S_{i}^{-1}\mathbb{E}(b_{i}b_{i}^{T}|\hat{b}_{i})S_{i}^{-1}D^{-1}C^{-1} = 0 \\ 0 &= \sum_{i=1}^{n} -\frac{1}{2}C + \frac{1}{2}D^{-1}S_{i}^{-1}\hat{b}_{i}\hat{b}_{i}^{T}S_{i}^{-1}D^{-1} - \frac{1}{2}D^{-1}S_{i}^{-1}\mu_{i}\hat{b}_{i}^{T}S_{i}^{-1}D^{-1} - \frac{1}{2}D^{-1}S_{i}^{-1}\hat{b}_{i}\mu_{i}^{T}S_{i}^{-1}D^{-1} + \frac{1}{2} D^{-1}S_{i}^{-1}\mathbb{E}(b_{i}b_{i}^{T}|\hat{b}_{i})S_{i}^{-1}D^{-1} \\ \hat{C} &= \frac{1}{n} \sum_{i=1}^{n} \left[D^{-1}S_{i}^{-1}\hat{b}_{i}\hat{b}_{i}^{T}S_{i}^{-1}D^{-1} - D^{-1}S_{i}^{-1}\mu_{i}\hat{b}_{i}^{T}S_{i}^{-1}D^{-1} - D^{-1}S_{i}^{-1}\hat{b}_{i}\mu_{i}^{T}S_{i}^{-1}D^{-1} + D^{-1}S_{i}^{-1}\mathbb{E}(b_{i}b_{i}^{T}|\hat{b}_{i})S_{i}^{-1}D^{-1} \right] \\ &= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[ (D^{-1}S_{i}^{-1}(\hat{b}_{i} - b_{i}))(D^{-1}S_{i}^{-1}(\hat{b}_{i} - b_{i}))^{T} | \hat{b}_{i}\right] \\ &= D^{-1}\frac{1}{n} \sum_{i=1}^{n} S_{i}^{-1}\mathbb{E}\left[ (\hat{b}_{i} - b_{i})(\hat{b}_{i} - b_{i})^{T} | \hat{b}_{i}\right] S_{i}^{-1} D^{-1} \end{align*} \]

We can update C and V as \[ \hat{C}_{(t+1)} = \hat{D}^{-1}_{(t)}\frac{1}{n} \left[\sum_{i=1}^{n} S_{i}^{-1}\mathbb{E}\left[ (\hat{b}_{i} - b_{i})(\hat{b}_{i} - b_{i})^{T} | \hat{b}_{i}\right]S_{i}^{-1} \right] \hat{D}^{-1}_{(t)} \\ \hat{D}_{(t+1)} = diag(1/\sqrt{\hat{C}_{(t+1)jj}}) \\ \hat{V}_{(t+1)} = \hat{D}_{(t+1)}\hat{C}_{(t+1)}\hat{D}_{(t+1)} \]

The resulting \(\hat{V}_{(t+1)}\) is equivalent as \[ \hat{C}_{(t+1)} = \frac{1}{n}\sum_{i=1}^{n} S_{i}^{-1}\mathbb{E}\left[ (\hat{b}_{i} - b_{i})(\hat{b}_{i} - b_{i})^{T} | \hat{b}_{i}\right]S_{i}^{-1} \\ \hat{D}_{(t+1)} = diag(1/\sqrt{\hat{C}_{(t+1)jj}}) \\ \hat{V}_{(t+1)} = \hat{D}_{(t+1)}\hat{C}_{(t+1)}\hat{D}_{(t+1)} \]

It is hard to estimate \(\boldsymbol{\pi}\) from the second term, \(\sum_{i=1}^{n}\mathbb{E}_{b_{i}|\hat{b}_{i}}\log \sum_{p=0}^{P} \pi_{p} N(b_{i}; 0, \Sigma_{p})\).

Given V, we estimate \(\boldsymbol{\pi}\) by max loglikelihood, which is a convex problem

Algorithm:

Input: X, Ulist, init_V
Given V, estimate pi by max loglikelihood (convex problem)
Compute loglikelihood
delta = 1
while delta > tol
  M step: update C
  Convert to V
  Given V, estimate pi by max loglikelihood (convex problem)
  Compute loglikelihood
  Update delta
penalty <- function(prior, pi_s){
  subset <- (prior != 1.0)
  sum((prior-1)[subset]*log(pi_s[subset]))
}

mixture.MV <- function(mash.data, Ulist, init_V=diag(ncol(mash.data$Bhat)), max_iter = 500, tol=1e-5, prior = c('nullbiased', 'uniform'), cor = TRUE, track_fit = FALSE){
  prior <- match.arg(prior)
  tracking = list()

  m.model = fit_mash_V(mash.data, Ulist, V = init_V, prior=prior)
  pi_s = get_estimated_pi(m.model, dimension = 'all')
  prior.v <- mashr:::set_prior(length(pi_s), prior)
  
  # compute loglikelihood
  log_liks <- numeric(max_iter+1)
  log_liks[1] <- get_loglik(m.model)+penalty(prior.v, pi_s)
  V = init_V
  
  result = list(V = V, logliks = log_liks[1], mash.model = m.model)
  
  for(i in 1:max_iter){
    if(track_fit){
      tracking[[i]] = result
    }
    # max_V
    V = E_V(mash.data, m.model)
    if(cor){
        V = cov2cor(V)
    }
    m.model = fit_mash_V(mash.data, Ulist, V, prior=prior)
    pi_s = get_estimated_pi(m.model, dimension = 'all')

    log_liks[i+1] <- get_loglik(m.model)+penalty(prior.v, pi_s)
    
    result = list(V = V, logliks = log_liks[1:(i+1)], mash.model = m.model)

    # Update delta
    delta.ll <- log_liks[i+1] - log_liks[i]
    if(delta.ll<=tol) break;
  }
  
  if(track_fit){
    result$trace = tracking
  }
  
  return(result)
}

E_V = function(mash.data, m.model){
  n = mashr:::n_effects(mash.data)
  Z = mash.data$Bhat/mash.data$Shat
  post.m.shat = m.model$result$PosteriorMean / mash.data$Shat
  post.sec.shat = plyr::laply(1:n, function(i) (t(m.model$result$PosteriorCov[,,i]/mash.data$Shat[i,])/mash.data$Shat[i,]) + tcrossprod(post.m.shat[i,])) # nx2x2 array
  temp1 = crossprod(Z)
  temp2 = crossprod(post.m.shat, Z) + crossprod(Z, post.m.shat)
  temp3 = unname(plyr::aaply(post.sec.shat, c(2,3), sum))

  (temp1 - temp2 + temp3)/n
}

fit_mash_V <- function(mash.data, Ulist, V, prior=c('nullbiased', 'uniform')){
  m.data = mashr::mash_set_data(Bhat=mash.data$Bhat, Shat=mash.data$Shat, V = V, alpha = mash.data$alpha)
  m.model = mashr::mash(m.data, Ulist, prior=prior, verbose = FALSE, outputlevel = 3)
  return(m.model)
}

Data

set.seed(1)
n = 4000; p = 2
Sigma = matrix(c(1,0.5,0.5,1),p,p)
U0 = matrix(0,2,2)
U1 = U0; U1[1,1] = 1
U2 = U0; U2[2,2] = 1
U3 = matrix(1,2,2)
Utrue = list(U0=U0, U1=U1, U2=U2, U3=U3)
data = generate_data(n, p, Sigma, Utrue)
m.data = mash_set_data(data$Bhat, data$Shat)
U.c = cov_canonical(m.data)

result.mV <- mixture.MV(m.data, U.c)

The estimated \(V\) is

result.mV$V
          [,1]      [,2]
[1,] 1.0000000 0.5087773
[2,] 0.5087773 1.0000000

The running time is seconds.

m.mV = result.mV$mash.model
null.ind = which(apply(data$B,1,sum) == 0)

The log likelihood is -12302.52. There are 26 significant samples, 0 false positives. The RRMSE is 0.5822283.

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] mashr_0.2.18.0454 ashr_2.2-7       

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.19      knitr_1.20        whisker_0.3-2    
 [4] magrittr_1.5      workflowr_1.1.1   REBayes_1.3      
 [7] MASS_7.3-50       pscl_1.5.2        doParallel_1.0.14
[10] SQUAREM_2017.10-1 lattice_0.20-35   foreach_1.4.4    
[13] plyr_1.8.4        stringr_1.3.1     tools_3.5.1      
[16] parallel_3.5.1    grid_3.5.1        R.oo_1.22.0      
[19] rmeta_3.0         git2r_0.23.0      htmltools_0.3.6  
[22] iterators_1.0.10  assertthat_0.2.0  abind_1.4-5      
[25] yaml_2.2.0        rprojroot_1.3-2   digest_0.6.18    
[28] Matrix_1.2-14     codetools_0.2-15  R.utils_2.7.0    
[31] evaluate_0.12     rmarkdown_1.10    stringi_1.2.4    
[34] compiler_3.5.1    Rmosek_8.0.69     backports_1.1.2  
[37] R.methodsS3_1.7.1 mvtnorm_1.0-8     truncnorm_1.0-8  

This reproducible R Markdown analysis was created with workflowr 1.1.1