Last updated: 2018-10-09
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(1)
The command set.seed(1)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: cd82d7e
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: analysis/.Rhistory
Ignored: analysis/include/.DS_Store
Ignored: code/.DS_Store
Ignored: data/.DS_Store
Ignored: docs/.DS_Store
Ignored: output/.DS_Store
Untracked files:
Untracked: analysis/Classify.Rmd
Untracked: analysis/EstimateCorEM3W2.Rmd
Untracked: analysis/EstimateCorMaxEMGD.Rmd
Untracked: analysis/EstimateCorMaxGD.Rmd
Untracked: analysis/EstimateCorOptimEM.Rmd
Untracked: analysis/EstimateCorPrior.Rmd
Untracked: analysis/EstimateCorSol.Rmd
Untracked: analysis/HierarchicalFlashSim.Rmd
Untracked: analysis/MashLowSignalGTEx4.Rmd
Untracked: analysis/Mash_GTEx.Rmd
Untracked: analysis/MeanAsh.Rmd
Untracked: analysis/OutlierDetection.Rmd
Untracked: analysis/OutlierDetection2.Rmd
Untracked: analysis/OutlierDetection3.Rmd
Untracked: analysis/OutlierDetection4.Rmd
Untracked: analysis/mash_missing_row.Rmd
Untracked: code/GTExNullModel.R
Untracked: code/MASH.result.1.rds
Untracked: code/MashClassify.R
Untracked: code/MashCorResult.R
Untracked: code/MashNULLCorResult.R
Untracked: code/MashSource.R
Untracked: code/Weight_plot.R
Untracked: code/addemV.R
Untracked: code/estimate_cor.R
Untracked: code/generateDataV.R
Untracked: code/johnprocess.R
Untracked: code/sim_mean_sig.R
Untracked: code/summary.R
Untracked: data/Blischak_et_al_2015/
Untracked: data/scale_data.rds
Untracked: docs/figure/Classify.Rmd/
Untracked: docs/figure/OutlierDetection.Rmd/
Untracked: docs/figure/OutlierDetection2.Rmd/
Untracked: docs/figure/OutlierDetection3.Rmd/
Untracked: docs/figure/Test.Rmd/
Untracked: docs/figure/mash_missing_whole_row_5.Rmd/
Untracked: docs/include/
Untracked: output/AddEMV/
Untracked: output/CovED_UKBio_strong.rds
Untracked: output/CovED_UKBio_strong_Z.rds
Untracked: output/Flash_UKBio_strong.rds
Untracked: output/GTExNULLres/
Untracked: output/GTEx_2.5_nullData.rds
Untracked: output/GTEx_2.5_nullModel.rds
Untracked: output/GTEx_2.5_nullPermData.rds
Untracked: output/GTEx_2.5_nullPermModel.rds
Untracked: output/GTEx_3.5_nullData.rds
Untracked: output/GTEx_3.5_nullModel.rds
Untracked: output/GTEx_3.5_nullPermData.rds
Untracked: output/GTEx_3.5_nullPermModel.rds
Untracked: output/GTEx_3_nullData.rds
Untracked: output/GTEx_3_nullModel.rds
Untracked: output/GTEx_3_nullPermData.rds
Untracked: output/GTEx_3_nullPermModel.rds
Untracked: output/GTEx_4.5_nullData.rds
Untracked: output/GTEx_4.5_nullModel.rds
Untracked: output/GTEx_4.5_nullPermData.rds
Untracked: output/GTEx_4.5_nullPermModel.rds
Untracked: output/GTEx_4_nullData.rds
Untracked: output/GTEx_4_nullModel.rds
Untracked: output/GTEx_4_nullPermData.rds
Untracked: output/GTEx_4_nullPermModel.rds
Untracked: output/MASH.10.em2.result.rds
Untracked: output/MASH.10.mle.result.rds
Untracked: output/MASHNULL.V.result.1.rds
Untracked: output/MASHNULL.V.result.10.rds
Untracked: output/MASHNULL.V.result.11.rds
Untracked: output/MASHNULL.V.result.12.rds
Untracked: output/MASHNULL.V.result.13.rds
Untracked: output/MASHNULL.V.result.14.rds
Untracked: output/MASHNULL.V.result.15.rds
Untracked: output/MASHNULL.V.result.16.rds
Untracked: output/MASHNULL.V.result.17.rds
Untracked: output/MASHNULL.V.result.18.rds
Untracked: output/MASHNULL.V.result.19.rds
Untracked: output/MASHNULL.V.result.2.rds
Untracked: output/MASHNULL.V.result.20.rds
Untracked: output/MASHNULL.V.result.3.rds
Untracked: output/MASHNULL.V.result.4.rds
Untracked: output/MASHNULL.V.result.5.rds
Untracked: output/MASHNULL.V.result.6.rds
Untracked: output/MASHNULL.V.result.7.rds
Untracked: output/MASHNULL.V.result.8.rds
Untracked: output/MASHNULL.V.result.9.rds
Untracked: output/MashCorSim--midway/
Untracked: output/Mash_EE_Cov_0_plusR1.rds
Untracked: output/UKBio_mash_model.rds
Untracked: output/result.em.rds
Unstaged changes:
Deleted: analysis/EstimateCorMax.Rmd
Modified: analysis/EstimateCorMaxEM2.Rmd
Deleted: analysis/EstimateCorMaxEMV.Rmd
Modified: analysis/EstimateCorMaxMash.Rmd
Deleted: analysis/MashLowSignalGTEx3.5P.Rmd
Modified: analysis/Mash_UKBio.Rmd
Modified: analysis/mash_missing_samplesize.Rmd
Modified: output/Flash_T2_0.rds
Modified: output/Flash_T2_0_mclust.rds
Modified: output/Mash_model_0_plusR1.rds
Modified: output/PresiAddVarCol.rds
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Last updated: 2018-10-09
library(mashr)
Loading required package: ashr
source('../code/generateDataV.R')
source('../code/summary.R')
We use EM algorithm to update \(\rho\).
B is the \(n\times R\) true value matrix. \(\mathbf{z}\) is a length n vector.
\[ P(\hat{B},B|\rho, \pi) = \prod_{i=1}^{n} \left[N(\hat{b}_{i}; b_{i}, V)\sum_{p=0}^{P} \pi_{p} N(b_{i}; 0, \Sigma_{p})\right] \]
\[ \begin{align*} \mathbb{E}_{B|\hat{B}} \log P(\hat{B},B|\rho, \pi) &= \sum_{i=1}^{n} \mathbb{E}_{b_{i}|\hat{b}_{i}}\left[ \log N(\hat{b}_{i}; b_{i}, V) + \log \sum_{p=0}^{P} \pi_{p} N(b_{i}; 0, \Sigma_{p}) \right] \\ &= \sum_{i=1}^{n} \mathbb{E}_{b_{i}|\hat{b}_{i}}\log N(\hat{b}_{i}; b_{i}, V) + \sum_{i=1}^{n}\mathbb{E}_{b_{i}|\hat{b}_{i}}\log \sum_{p=0}^{P} \pi_{p} N(b_{i}; 0, \Sigma_{p}) \end{align*} \]
\(V\) depends on the first term only. Let \(\mu_{i} = \mathbb{E}_{b_{i}|\hat{b}_{i}}(b_{i})\) \[ \begin{align*} \log N(\hat{b}_{i}; b_{i}, V) &= -\frac{R}{2}\log 2\pi -\frac{1}{2}\log |V| - \frac{1}{2}(\hat{b}_{i}-b_{i})^{T}V^{-1}(\hat{b}_{i}-b_{i}) \\ &= -\frac{R}{2}\log 2\pi -\frac{1}{2}\log |V| - \frac{1}{2}\hat{b}_{i}^{T}V^{-1}\hat{b}_{i} + \frac{1}{2}b_{i}^{T}V^{-1}\hat{b}_{i} + \frac{1}{2}\hat{b}_{i}^{T}V^{-1}b_{i} -\frac{1}{2}b_{i}^{T}V^{-1}b_{i} \\ \mathbb{E}_{b_{i}|\hat{b}_{i}} \log N(\hat{b}_{i}; b_{i}, V) &= -\frac{R}{2}\log 2\pi -\frac{1}{2}\log |V| - \frac{1}{2}\hat{b}_{i}^{T}V^{-1}\hat{b}_{i} + \frac{1}{2}\mu_{i}^{T}V^{-1}\hat{b}_{i} + \frac{1}{2}\hat{b}_{i}^{T}V^{-1}\mu_{i} -\frac{1}{2}tr(V^{-1}\mathbb{E}_{b_{i}|\hat{b}_{i}}(b_{i}b_{i}^{T})) \end{align*} \]
Maximize with respect to V:
We have constraint on V, the diagonal of V must be 1. Let \(V = DCD\), C is the covariance matrix, D = \(diag(1/sqrt(C_{jj}))\).
\[ f(C) = \sum_{i=1}^{n} -\frac{R}{2}\log 2\pi -\frac{1}{2}\log |C|- \log |D| - \frac{1}{2}\hat{b}_{i}^{T}D^{-1}C^{-1}D^{-1}\hat{b}_{i} + \frac{1}{2}\mu_{i}^{T}D^{-1}C^{-1}D^{-1}\hat{b}_{i} + \frac{1}{2}\hat{b}_{i}^{T}D^{-1}C^{-1}D^{-1}\mu_{i} -\frac{1}{2}tr(D^{-1}C^{-1}D^{-1}\mathbb{E}_{b_{i}|\hat{b}_{i}}(b_{i}b_{i}^{T})) \]
\[ \begin{align*} f(C)' &= \sum_{i=1}^{n} -\frac{1}{2}C^{-1} + \frac{1}{2}C^{-1}D^{-1}\hat{b}_{i}\hat{b}_{i}^{T}D^{-1}C^{-1} - \frac{1}{2} C^{-1}D^{-1}\mu_{i}\hat{b}_{i}^{T}D^{-1}C^{-1} - \frac{1}{2}C^{-1}D^{-1}\hat{b}_{i}\mu_{i}^{T}D^{-1}C^{-1} + \frac{1}{2} C^{-1}D^{-1}\mathbb{E}(b_{i}b_{i}^{T}|\hat{b}_{i})D^{-1}C^{-1} = 0 \\ 0 &= \sum_{i=1}^{n} -\frac{1}{2}C + \frac{1}{2}D^{-1}\hat{b}_{i}\hat{b}_{i}^{T}D^{-1} - \frac{1}{2}D^{-1}\mu_{i}\hat{b}_{i}^{T}D^{-1} - \frac{1}{2}D^{-1}\hat{b}_{i}\mu_{i}^{T}D^{-1} + \frac{1}{2} D^{-1}\mathbb{E}(b_{i}b_{i}^{T}|\hat{b}_{i})D^{-1} \\ \hat{C} &= \frac{1}{n} \sum_{i=1}^{n} \left[D^{-1}\hat{b}_{i}\hat{b}_{i}^{T}D^{-1} - D^{-1}\mu_{i}\hat{b}_{i}^{T}D^{-1} - D^{-1}\hat{b}_{i}\mu_{i}^{T}D^{-1} + D^{-1}\mathbb{E}(b_{i}b_{i}^{T}|\hat{b}_{i})D^{-1} \right] \\ &= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[ (D^{-1}(\hat{b}_{i} - b_{i}))(D^{-1}(\hat{b}_{i} - b_{i}))^{T} | \hat{b}_{i}\right] \\ &= D^{-1}\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[ (\hat{b}_{i} - b_{i})(\hat{b}_{i} - b_{i})^{T} | \hat{b}_{i}\right]D^{-1} \end{align*} \]
We can update C and V as \[ \hat{C}_{(t+1)} = \hat{D}^{-1}_{(t)}\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[ (\hat{b}_{i} - b_{i})(\hat{b}_{i} - b_{i})^{T} | \hat{b}_{i}\right]\hat{D}^{-1}_{(t)} \\ \hat{D}_{(t+1)} = diag(1/\sqrt{\hat{C}_{(t+1)jj}}) \\ \hat{V}_{(t+1)} = \hat{D}_{(t+1)}\hat{C}_{(t+1)}\hat{D}_{(t+1)} \]
The resulting \(\hat{V}_{(t+1)}\) is equivalent as \[ \hat{C}_{(t+1)} = \frac{1}{n}\sum_{i=1}^{n} \mathbb{E}\left[ (\hat{b}_{i} - b_{i})(\hat{b}_{i} - b_{i})^{T} | \hat{b}_{i}\right] \\ \hat{D}_{(t+1)} = diag(1/\sqrt{\hat{C}_{(t+1)jj}}) \\ \hat{V}_{(t+1)} = \hat{D}_{(t+1)}\hat{C}_{(t+1)}\hat{D}_{(t+1)} \]
It is hard to estimate \(\boldsymbol{\pi}\) from the second term, \(\sum_{i=1}^{n}\mathbb{E}_{b_{i}|\hat{b}_{i}}\log \sum_{p=0}^{P} \pi_{p} N(b_{i}; 0, \Sigma_{p})\).
Given V, we estimate \(\boldsymbol{\pi}\) by max loglikelihood, which is a convex problem
Algorithm:
Input: X, Ulist, init_V
Given V, estimate pi by max loglikelihood (convex problem)
Compute loglikelihood
delta = 1
while delta > tol
M step: update C
Convert to V
Given V, estimate pi by max loglikelihood (convex problem)
Compute loglikelihood
Update delta
penalty <- function(prior, pi_s){
subset <- (prior != 1.0)
sum((prior-1)[subset]*log(pi_s[subset]))
}
#' @title compute log likelihood
#' @param L log likelihoods,
#' where the (i,k)th entry is the log probability of observation i
#' given it came from component k of g
#' @param p the vector of mixture proportions
#' @param prior the weight for the penalty
compute.log.lik <- function(lL, p, prior){
p = normalize(pmax(0,p))
temp = log(exp(lL$loglik_matrix) %*% p)+lL$lfactors
return(sum(temp) + penalty(prior, p))
# return(sum(temp))
}
normalize <- function(x){
x/sum(x)
}
mixture.MV.times <- function(X, Ulist, init_V = list(diag(ncol(X))), tol=1e-5, prior = c('nullbiased', 'uniform')){
times = length(init_V)
result = list()
loglik = c()
V = list()
time.t = c()
converge.status = c()
for(i in 1:times){
out.time = system.time(result[[i]] <- mixture.MV(X, Ulist,
init_V=init_V[[i]],
prior=prior,
tol = tol))
time.t = c(time.t, out.time['elapsed'])
loglik = c(loglik, tail(result[[i]]$loglik, 1))
V = c(V, list(result[[i]]$V))
}
if(abs(max(loglik) - min(loglik)) < 1e-4){
status = 'global'
}else{
status = 'local'
}
ind = which.max(loglik)
return(list(result=result[[ind]], status = status, loglik = loglik, V=V, time = time.t))
}
mixture.MV <- function(X, Ulist, init_V=diag(ncol(X)), tol=1e-5, prior = c('nullbiased', 'uniform')){
prior <- match.arg(prior)
m.model = fit_mash_V(X, Ulist, V = init_V, prior=prior)
pi_s = get_estimated_pi(m.model, dimension = 'all')
prior.v <- mashr:::set_prior(length(pi_s), prior)
# compute loglikelihood
log_liks <- c()
log_liks <- c(log_liks, get_loglik(m.model)+penalty(prior.v, pi_s))
delta.ll <- 1
niter <- 0
V = init_V
while(delta.ll > tol){
# max_V
V = E_V(X, m.model)
V = cov2cor(V)
m.model = fit_mash_V(X, Ulist, V, prior=prior)
pi_s = get_estimated_pi(m.model, dimension = 'all')
log_liks <- c(log_liks, get_loglik(m.model)+penalty(prior.v, pi_s))
# Update delta
delta.ll <- log_liks[length(log_liks)] - log_liks[length(log_liks)-1]
niter <- niter + 1
}
return(list(pi = normalize(pi_s), V=V, loglik = log_liks))
}
E_V = function(X, m.model){
n = nrow(X)
post.m = m.model$result$PosteriorMean
post.sec = plyr::laply(1:n, function(i) m.model$result$PosteriorCov[,,i] + tcrossprod(post.m[i,])) # nx2x2 array
temp1 = crossprod(X)
temp2 = crossprod(post.m, X) + crossprod(X, post.m)
temp3 = unname(plyr::aaply(post.sec, c(2,3), sum))
(temp1 - temp2 + temp3)/n
}
fit_mash_V <- function(X, Ulist, V, prior=c('nullbiased', 'uniform')){
m.data = mashr::mash_set_data(Bhat=X, Shat=1, V = V)
m.model = mashr::mash(m.data, Ulist, prior=prior, verbose = FALSE, outputlevel = 3)
return(m.model)
}
set.seed(1)
n = 4000; p = 2
Sigma = matrix(c(1,0.5,0.5,1),p,p)
U0 = matrix(0,2,2)
U1 = U0; U1[1,1] = 1
U2 = U0; U2[2,2] = 1
U3 = matrix(1,2,2)
Utrue = list(U0=U0, U1=U1, U2=U2, U3=U3)
data = generate_data(n, p, Sigma, Utrue)
m.data = mash_set_data(data$Bhat, data$Shat)
U.c = cov_canonical(m.data)
result.mV <- mixture.MV.times(m.data$Bhat, U.c)
The estimated \(V\) is
result.mV$result$V
[,1] [,2]
[1,] 1.0000000 0.5087773
[2,] 0.5087773 1.0000000
The running time is 25.541 seconds.
m.data.mV = mash_set_data(data$Bhat, data$Shat, V = result.mV$result$V)
U.c.mV = cov_canonical(m.data.mV)
m.mV = mash(m.data.mV, U.c, verbose= FALSE)
null.ind = which(apply(data$B,1,sum) == 0)
The log likelihood is -12302.52. There are 26 significant samples, 0 false positives. The RRMSE is 0.5822283.
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] mashr_0.2-15 ashr_2.2-14
loaded via a namespace (and not attached):
[1] Rcpp_0.12.19 knitr_1.20 whisker_0.3-2
[4] magrittr_1.5 workflowr_1.1.1 REBayes_1.3
[7] MASS_7.3-50 pscl_1.5.2 doParallel_1.0.14
[10] SQUAREM_2017.10-1 lattice_0.20-35 foreach_1.4.4
[13] plyr_1.8.4 stringr_1.3.1 tools_3.5.1
[16] parallel_3.5.1 grid_3.5.1 R.oo_1.22.0
[19] rmeta_3.0 git2r_0.23.0 htmltools_0.3.6
[22] iterators_1.0.10 assertthat_0.2.0 abind_1.4-5
[25] yaml_2.2.0 rprojroot_1.3-2 digest_0.6.15
[28] Matrix_1.2-14 codetools_0.2-15 R.utils_2.6.0
[31] evaluate_0.11 rmarkdown_1.10 stringi_1.2.4
[34] compiler_3.5.1 Rmosek_8.0.69 backports_1.1.2
[37] R.methodsS3_1.7.1 mvtnorm_1.0-8 truncnorm_1.0-8
This reproducible R Markdown analysis was created with workflowr 1.1.1