Last updated: 2018-08-20

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(1)

    The command set.seed(1) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: b083054

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/.DS_Store
        Ignored:    analysis/.Rhistory
        Ignored:    analysis/figure/
        Ignored:    analysis/include/.DS_Store
        Ignored:    data/.DS_Store
        Ignored:    docs/.DS_Store
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  _workflowr.yml
        Untracked:  analysis/Classify.Rmd
        Untracked:  analysis/EstimateCorMaxEM.Rmd
        Untracked:  analysis/EstimateCorMaxEMGD.Rmd
        Untracked:  analysis/EstimateCorPrior.Rmd
        Untracked:  analysis/EstimateCorSol.Rmd
        Untracked:  analysis/HierarchicalFlashSim.Rmd
        Untracked:  analysis/MashLowSignal.Rmd
        Untracked:  analysis/Mash_GTEx.Rmd
        Untracked:  analysis/MeanAsh.Rmd
        Untracked:  analysis/OutlierDetection.Rmd
        Untracked:  analysis/OutlierDetection2.Rmd
        Untracked:  analysis/OutlierDetection3.Rmd
        Untracked:  analysis/OutlierDetection4.Rmd
        Untracked:  analysis/Test.Rmd
        Untracked:  analysis/mash_missing_row.Rmd
        Untracked:  code/MashClassify.R
        Untracked:  code/MashCorResult.R
        Untracked:  code/MashSource.R
        Untracked:  code/Weight_plot.R
        Untracked:  code/addemV.R
        Untracked:  code/estimate_cor.R
        Untracked:  code/generateDataV.R
        Untracked:  code/johnprocess.R
        Untracked:  code/sim_mean_sig.R
        Untracked:  code/summary.R
        Untracked:  data/Blischak_et_al_2015/
        Untracked:  data/scale_data.rds
        Untracked:  docs/figure/Classify.Rmd/
        Untracked:  docs/figure/OutlierDetection.Rmd/
        Untracked:  docs/figure/OutlierDetection2.Rmd/
        Untracked:  docs/figure/OutlierDetection3.Rmd/
        Untracked:  docs/figure/Test.Rmd/
        Untracked:  docs/figure/mash_missing_whole_row_5.Rmd/
        Untracked:  docs/include/
        Untracked:  output/AddEMV/
        Untracked:  output/CovED_UKBio_strong.rds
        Untracked:  output/CovED_UKBio_strong_Z.rds
        Untracked:  output/Flash_UKBio_strong.rds
        Untracked:  output/MASH.10.em2.result.rds
        Untracked:  output/MASH.10.mle.result.rds
        Untracked:  output/MASH.result.1.rds
        Untracked:  output/MASH.result.10.rds
        Untracked:  output/MASH.result.2.rds
        Untracked:  output/MASH.result.3.rds
        Untracked:  output/MASH.result.4.rds
        Untracked:  output/MASH.result.5.rds
        Untracked:  output/MASH.result.6.rds
        Untracked:  output/MASH.result.7.rds
        Untracked:  output/MASH.result.8.rds
        Untracked:  output/MASH.result.9.rds
        Untracked:  output/Mash_EE_Cov_0_plusR1.rds
        Untracked:  output/Trail 1/
        Untracked:  output/Trail 2/
        Untracked:  output/UKBio_mash_model.rds
    
    Unstaged changes:
        Modified:   analysis/EstimateCorMaxEM2.Rmd
        Modified:   analysis/Mash_UKBio.Rmd
        Modified:   analysis/_site.yml
        Modified:   analysis/chunks.R
        Modified:   analysis/mash_missing_samplesize.Rmd
        Modified:   output/Flash_T2_0.rds
        Modified:   output/Flash_T2_0_mclust.rds
        Modified:   output/Mash_model_0_plusR1.rds
        Modified:   output/PresiAddVarCol.rds
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd b083054 zouyuxin 2018-08-20 wflow_publish(“analysis/EstimateCorMax.Rmd”)
    html 6281062 zouyuxin 2018-08-15 Build site.
    Rmd 3e3e128 zouyuxin 2018-08-15 wflow_publish(c(“analysis/EstimateCor.Rmd”, “analysis/EstimateCorMax.Rmd”,
    html bf28e18 zouyuxin 2018-08-14 Build site.
    Rmd 15b85be zouyuxin 2018-08-14 wflow_publish(c(“analysis/EstimateCorMax.Rmd”, “analysis/EstimateCorMaxEM2.Rmd”))
    html 568fbe6 zouyuxin 2018-08-13 Build site.
    Rmd 3ae3f08 zouyuxin 2018-08-13 wflow_publish(c(“analysis/EstimateCor.Rmd”,
    html 1ceff72 zouyuxin 2018-08-03 Build site.
    Rmd 9d2623c zouyuxin 2018-08-03 wflow_publish(c(“analysis/EstimateCorMax.Rmd”))
    html faa5b1a zouyuxin 2018-07-26 Build site.
    Rmd 7ac3df0 zouyuxin 2018-07-26 wflow_publish(“analysis/EstimateCorMax.Rmd”)


library(mashr)
Loading required package: ashr
source('../code/generateDataV.R')
source('../code/estimate_cor.R')
source('../code/summary.R')
library(kableExtra)
library(knitr)

We want to estimate \(\rho\) \[ \left(\begin{matrix} \hat{x} \\ \hat{y} \end{matrix} \right) | \left(\begin{matrix} x \\ y \end{matrix} \right) \sim N(\left(\begin{matrix} \hat{x} \\ \hat{y} \end{matrix} \right) ; \left(\begin{matrix} x \\ y \end{matrix} \right), \left( \begin{matrix} 1 & \rho \\ \rho & 1 \end{matrix} \right)) \] \[ \left(\begin{matrix} x \\ y \end{matrix} \right) \sim \sum_{k=0}^{K} \pi_{k} N( \left(\begin{matrix} x \\ y \end{matrix} \right); 0, U_{k} ) \] \(\Rightarrow\) \[ \left(\begin{matrix} \hat{x} \\ \hat{y} \end{matrix} \right) \sim \sum_{k=0}^{K} \pi_{k} N( \left(\begin{matrix} \hat{x} \\ \hat{y} \end{matrix} \right); 0, \left( \begin{matrix} 1 & \rho \\ \rho & 1 \end{matrix} \right) + U_{k} ) \] \[ \Sigma_{k} = \left( \begin{matrix} 1 & \rho \\ \rho & 1 \end{matrix} \right) + U_{k} = \left( \begin{matrix} 1 & \rho \\ \rho & 1 \end{matrix} \right) + \left( \begin{matrix} u_{k11} & u_{k12} \\ u_{k21} & u_{k22} \end{matrix} \right) = \left( \begin{matrix} 1+u_{k11} & \rho+u_{k12} \\ \rho+u_{k21} & 1+u_{k22} \end{matrix} \right) \] Let \(\sigma_{k11} = \sqrt{1+u_{k11}}\), \(\sigma_{k22} = \sqrt{1+u_{k22}}\), \(\phi_{k}=\frac{\rho+u_{k12}}{\sigma_{k11}\sigma_{k22}}\)

MLE

The loglikelihood is (with penalty) \[ l(\rho, \pi) = \sum_{i=1}^{n} \log \sum_{k=0}^{K} \pi_{k}N(x_{i}; 0, \Sigma_{k}) + \sum_{k=0}^{K} (\lambda_{k}-1) \log \pi_{k} \]

The penalty on \(\pi\) encourages over-estimation of \(\pi_{0}\), \(\lambda_{k}\geq 1\).

\[ l(\rho, \pi) = \sum_{i=1}^{n} \log \sum_{k=0}^{K} \pi_{k}\frac{1}{2\pi\sigma_{k11}\sigma_{k22}\sqrt{1-\phi_{k}^2}} \exp\left( -\frac{1}{2(1-\phi_{k}^2)}\left[ \frac{x_{i}^2}{\sigma_{k11}^2} + \frac{y_{i}^2}{\sigma_{k22}^2} - \frac{2\phi_{k}x_{i}y_{i}}{\sigma_{k11}\sigma_{k22}}\right] \right) + \sum_{k=0}^{K} (\lambda_{k}-1) \log \pi_{k} \]

Note: This probelm is convex with respect to \(\pi\). In terms of \(\rho\), the covenxity depends on the data.

Algorithm:

Input: X, init_pi, init_rho, Ulist
Compute loglikelihood
delta = 1
while delta > tol
  Given pi, estimate rho by max loglikelihood (optim function)
  Given rho, estimate pi by max loglikelihood (convex problem)
  Compute loglikelihood
  Update delta

Data

\[ \hat{\beta}|\beta \sim N_{2}(\hat{\beta}; \beta, \left(\begin{matrix} 1 & 0.5 \\ 0.5 & 1 \end{matrix}\right)) \]

\[ \beta \sim \frac{1}{4}\delta_{0} + \frac{1}{4}N_{2}(0, \left(\begin{matrix} 1 & 0 \\ 0 & 0 \end{matrix}\right)) + \frac{1}{4}N_{2}(0, \left(\begin{matrix} 0 & 0 \\ 0 & 1 \end{matrix}\right)) + \frac{1}{4}N_{2}(0, \left(\begin{matrix} 1 & 1 \\ 1 & 1 \end{matrix}\right)) \]

n = 4000

set.seed(1)
n = 4000; p = 2
Sigma = matrix(c(1,0.5,0.5,1),p,p)
U0 = matrix(0,2,2)
U1 = U0; U1[1,1] = 1
U2 = U0; U2[2,2] = 1
U3 = matrix(1,2,2)
Utrue = list(U0=U0, U1=U1, U2=U2, U3=U3)
data = generate_data(n, p, Sigma, Utrue)
m.data = mash_set_data(data$Bhat, data$Shat)
U.c = cov_canonical(m.data)
grid = mashr:::autoselect_grid(m.data, sqrt(2))
Ulist = mashr:::normalize_Ulist(U.c)
xUlist = mashr:::expand_cov(Ulist,grid,usepointmass =  TRUE)
result <- optimize_pi_rho_times(data$Bhat, xUlist, init_rho = c(-0.7,0,0.7))
Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol
Warning in mixIP(matrix_lik = structure(c(0.0627889120852815,
0.0114523005348735, : Optimization step yields mixture weights that are
either too small, or negative; weights have been corrected and renormalized
after the optimization.
plot(result[[1]]$loglik)

Expand here to see past versions of unnamed-chunk-4-1.png:
Version Author Date
568fbe6 zouyuxin 2018-08-13
faa5b1a zouyuxin 2018-07-26

The estimated \(\rho\) is 0.6124039.

m.data.mle = mash_set_data(data$Bhat, data$Shat, V = matrix(c(1,result[[1]]$rho,result[[1]]$rho,1),2,2))
U.c = cov_canonical(m.data.mle)
m.mle = mash(m.data.mle, U.c, verbose= FALSE)
null.ind = which(apply(data$B,1,sum) == 0)

The log likelihood is -1.23017710^{4}. There are 55 significant samples, 2 false positives. The RRMSE is 0.5964282.

The estimated pi is

barplot(get_estimated_pi(m.mle), las=2, cex.names = 0.7, main='MLE', ylim=c(0,0.8))

Expand here to see past versions of unnamed-chunk-6-1.png:
Version Author Date
bf28e18 zouyuxin 2018-08-14
568fbe6 zouyuxin 2018-08-13

The ROC curve:

m.data.correct = mash_set_data(data$Bhat, data$Shat, V=Sigma)
m.correct = mash(m.data.correct, U.c, verbose = FALSE)
m.correct.seq = ROC.table(data$B, m.correct)
m.mle.seq = ROC.table(data$B, m.mle)

Expand here to see past versions of unnamed-chunk-8-1.png:
Version Author Date
568fbe6 zouyuxin 2018-08-13

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] knitr_1.20       kableExtra_0.9.0 mashr_0.2-11     ashr_2.2-10     

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.18      pillar_1.3.0      compiler_3.5.1   
 [4] git2r_0.23.0      plyr_1.8.4        workflowr_1.1.1  
 [7] R.methodsS3_1.7.1 R.utils_2.6.0     iterators_1.0.10 
[10] tools_3.5.1       digest_0.6.15     viridisLite_0.3.0
[13] tibble_1.4.2      evaluate_0.11     lattice_0.20-35  
[16] pkgconfig_2.0.1   rlang_0.2.1       Matrix_1.2-14    
[19] foreach_1.4.4     rstudioapi_0.7    yaml_2.2.0       
[22] parallel_3.5.1    mvtnorm_1.0-8     xml2_1.2.0       
[25] httr_1.3.1        stringr_1.3.1     REBayes_1.3      
[28] hms_0.4.2         rprojroot_1.3-2   grid_3.5.1       
[31] R6_2.2.2          rmarkdown_1.10    rmeta_3.0        
[34] readr_1.1.1       magrittr_1.5      whisker_0.3-2    
[37] scales_0.5.0      backports_1.1.2   codetools_0.2-15 
[40] htmltools_0.3.6   MASS_7.3-50       rvest_0.3.2      
[43] assertthat_0.2.0  colorspace_1.3-2  stringi_1.2.4    
[46] Rmosek_8.0.69     munsell_0.5.0     doParallel_1.0.11
[49] pscl_1.5.2        truncnorm_1.0-8   SQUAREM_2017.10-1
[52] crayon_1.3.4      R.oo_1.22.0      

This reproducible R Markdown analysis was created with workflowr 1.1.1