Last updated: 2018-10-24
workflowr checks: (Click a bullet for more information)Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
set.seed(1)
The command set.seed(1)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: analysis/.Rhistory
Ignored: analysis/include/.DS_Store
Ignored: code/.DS_Store
Ignored: data/.DS_Store
Ignored: docs/.DS_Store
Ignored: output/.DS_Store
Untracked files:
Untracked: analysis/Classify.Rmd
Untracked: analysis/EstimateCorMaxEMGD.Rmd
Untracked: analysis/EstimateCorMaxGD.Rmd
Untracked: analysis/HierarchicalFlashSim.Rmd
Untracked: analysis/MashLowSignalGTEx4.Rmd
Untracked: analysis/Mash_GTEx.Rmd
Untracked: analysis/MeanAsh.Rmd
Untracked: analysis/OutlierDetection.Rmd
Untracked: analysis/OutlierDetection2.Rmd
Untracked: analysis/OutlierDetection3.Rmd
Untracked: analysis/OutlierDetection4.Rmd
Untracked: analysis/mash_missing_row.Rmd
Untracked: code/GTExNullModel.R
Untracked: code/MashClassify.R
Untracked: code/MashCorResult.R
Untracked: code/MashCormVResult.R
Untracked: code/MashNULLCorResult.R
Untracked: code/MashSource.R
Untracked: code/Weight_plot.R
Untracked: code/addemV.R
Untracked: code/estimate_cor.R
Untracked: code/generateDataV.R
Untracked: code/johnprocess.R
Untracked: code/mV.R
Untracked: code/sim_mean_sig.R
Untracked: code/summary.R
Untracked: data/Blischak_et_al_2015/
Untracked: data/scale_data.rds
Untracked: docs/figure/Classify.Rmd/
Untracked: docs/figure/OutlierDetection.Rmd/
Untracked: docs/figure/OutlierDetection2.Rmd/
Untracked: docs/figure/OutlierDetection3.Rmd/
Untracked: docs/figure/Test.Rmd/
Untracked: docs/figure/mash_missing_whole_row_5.Rmd/
Untracked: docs/include/
Untracked: output/AddEMV/
Untracked: output/CovED_UKBio_strong.rds
Untracked: output/CovED_UKBio_strong_Z.rds
Untracked: output/Flash_UKBio_strong.rds
Untracked: output/GTExNULLres/
Untracked: output/GTEx_2.5_nullData.rds
Untracked: output/GTEx_2.5_nullModel.rds
Untracked: output/GTEx_2.5_nullPermData.rds
Untracked: output/GTEx_2.5_nullPermModel.rds
Untracked: output/GTEx_3.5_nullData.rds
Untracked: output/GTEx_3.5_nullModel.rds
Untracked: output/GTEx_3.5_nullPermData.rds
Untracked: output/GTEx_3.5_nullPermModel.rds
Untracked: output/GTEx_3_nullData.rds
Untracked: output/GTEx_3_nullModel.rds
Untracked: output/GTEx_3_nullPermData.rds
Untracked: output/GTEx_3_nullPermModel.rds
Untracked: output/GTEx_4.5_nullData.rds
Untracked: output/GTEx_4.5_nullModel.rds
Untracked: output/GTEx_4.5_nullPermData.rds
Untracked: output/GTEx_4.5_nullPermModel.rds
Untracked: output/GTEx_4_nullData.rds
Untracked: output/GTEx_4_nullModel.rds
Untracked: output/GTEx_4_nullPermData.rds
Untracked: output/GTEx_4_nullPermModel.rds
Untracked: output/MASH.10.em2.result.rds
Untracked: output/MASH.10.mle.result.rds
Untracked: output/MashCorSim--midway/
Untracked: output/Mash_EE_Cov_0_plusR1.rds
Untracked: output/UKBio_mash_model.rds
Untracked: output/mVIterations/
Untracked: output/mVUlist/
Untracked: output/result.em.rds
Unstaged changes:
Deleted: analysis/EstimateCorEM3.Rmd
Modified: analysis/EstimateCorMaxEM2.Rmd
Modified: analysis/Mash_UKBio.Rmd
Modified: analysis/mash_missing_samplesize.Rmd
Modified: output/Flash_T2_0.rds
Modified: output/Flash_T2_0_mclust.rds
Modified: output/Mash_model_0_plusR1.rds
Modified: output/PresiAddVarCol.rds
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes. File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 0fe65ad | zouyuxin | 2018-10-24 | wflow_publish(“analysis/EstimateCorEM2.Rmd”) |
html | c3d87aa | zouyuxin | 2018-10-09 | Build site. |
Rmd | 8a7ee7c | zouyuxin | 2018-10-09 | wflow_publish(c(“analysis/EstimateCorEM.Rmd”, “analysis/EstimateCorEM2.Rmd”, “analysis/EstimateCorEM3.Rmd”)) |
html | e5e7da7 | zouyuxin | 2018-10-09 | Build site. |
Rmd | 4c4955b | zouyuxin | 2018-10-09 | wflow_publish(“analysis/EstimateCorEM2.Rmd”) |
html | 3c9f55e | zouyuxin | 2018-10-09 | Build site. |
Rmd | 596f070 | zouyuxin | 2018-10-09 | wflow_publish(“analysis/EstimateCorEM2.Rmd”) |
library(mashr)
Loading required package: ashr
source('../code/generateDataV.R')
source('../code/summary.R')
We use EM algorithm to update ρ.
B is the n×R true value matrix. z is a length n vector.
P(ˆB,B,z|ρ,π)=J∏j=1P∏p=0[πpN(ˆbj;bj,V)N(bi;0,Σp)]I(zi=p)
P(zj=p,bj|ˆbj)=P(zj=p,bj,ˆbj)P(ˆbj)=P(ˆbj|bj)P(bj|zj=p)P(zj=p)P(ˆbj)=πpNR(ˆbj;bj,V)NR(bj;0,Σp)∑p′πp′NR(ˆbj;0,V+Σp′)=πpNR(ˆbj;0,V+Σp)∑p′πp′NR(ˆbj;0,V+Σp′)NR(ˆbj;bj,V)NR(bj;0,Σp)NR(ˆbj;0,V+Σp)=γjpP(bj|zj=p,ˆbj)=P(zj=p|ˆbj)P(bj|zj=p,ˆbj)
Ez,B|ˆBlogp(ˆB,B,z)=J∑j=1P∑p=1γjp[logπp−12log|V|−12Ebj|ˆbj,zj=p[(ˆbj−bj)TV−1(ˆbj−bj)]−12log|Σp|−12Ebj|ˆbj,zj=p[bTjΣ−1pbj]]
f(V)=J∑j=1P∑p=1γjp[−12log|V|−12Ebj|ˆbj,zj=p[(ˆbj−bj)TV−1(ˆbj−bj)]]=J∑j=1[−12log|V|−12Ebj|ˆbj[(ˆbj−bj)TV−1(ˆbj−bj)]]
V has a specific form: V=(1ρρ1)
Let μj=Ebj|ˆbj(bj) logN(ˆbj;bj,V)=−12log|V|−12(ˆbj−bj)TV−1(ˆbj−bj)=−12log|V|−12ˆbTjV−1ˆbj+12bTjV−1ˆbj+12ˆbTjV−1bj−12bTjV−1bjEbj|ˆbjlogN(ˆbj;bj,V)=−12log|V|−12ˆbTjV−1ˆbj+12μTjV−1ˆbj+12ˆbTjV−1μj−12tr(V−1Ebj|ˆbj(bjbTj))
Ebj|ˆbjlogN(ˆbj;bj,V)=−12log|V|−12ˆbTjV−1ˆbj+12μTjV−1ˆbj+12ˆbTjV−1μj−12tr(V−1Ebj|ˆbj(bjbTj))=−12log(1−ρ2)−12(1−ρ2)(ˆb2j1+ˆb2j2−2ˆbj1ˆbj2ρ−2ˆbj1μj1−2ˆbj2μj2+2ˆbj2μj1ρ+2ˆbj1μj2ρ+E(b2j1|ˆbj)+E(b2j2|ˆbj)−2ρE(bj1bj2|ˆbj))
f(ρ)=J∑j=1−12log(1−ρ2)−12(1−ρ2)(ˆb2j1+ˆb2j2−2ˆbj1ˆbj2ρ−2ˆbj1μj1−2ˆbj2μj2+2ˆbj2μj1ρ+2ˆbj1μj2ρ+E(b2j1|ˆbj)+E(b2j2|ˆbj)−2ρE(bj1bj2|ˆbj))
f(ρ)′=J∑j=1ρ1−ρ2−ρ(1−ρ2)2(ˆb2j1+ˆb2j2−2ˆbj1μj1−2ˆbj2μj2+E(b2j1|ˆbj)+E(b2j2|ˆbj))−ρ2+1(1−ρ2)2(−ˆbj1ˆbj2+ˆbj1μj2+ˆbj2μj1−E(bj1bj2|ˆbj))=00=ρ(1−ρ2)n−ρn∑j=1(ˆb2j1+ˆb2j2−2ˆbj1μj1−2ˆbj2μj2+E(b2j1|ˆbj)+E(b2j2|ˆbj))−(ρ2+1)n∑j=1(−ˆbj1ˆbj2+ˆbj1μj2+ˆbj2μj1−E(bj1bj2|ˆbj))0=−nρ3−ρ2n∑j=1(−ˆbj1ˆbj2+ˆbj1μj2+ˆbj2μj1−E(bj1bj2|ˆbj))−ρn∑j=1(ˆb2j1+ˆb2j2−2ˆbj1μj1−2ˆbj2μj2+E(b2j1|ˆbj)+E(b2j2|ˆbj)−1)−n∑j=1(−ˆbj1ˆbj2+ˆbj1μj2+ˆbj2μj1−E(bj1bj2|ˆbj)) The polynomial has either 1 or 3 real roots in (-1, 1).
Given ρ, we estimate \boldsymbol{\pi} by max loglikelihood (convex problem)
Algorithm:
Input: X, Ulist, init_rho
Given rho, estimate pi by max loglikelihood (convex problem)
Compute loglikelihood
delta = 1
while delta > tol
M step: update rho
Given rho, estimate pi by max loglikelihood (convex problem)
Compute loglikelihood
Update delta
#' @param rho the off diagonal element of V, 2 by 2 correlation matrix
#' @param Ulist a list of covariance matrices, U_{k}
get_sigma <- function(rho, Ulist){
V <- matrix(c(1,rho,rho,1), 2,2)
lapply(Ulist, function(U) U + V)
}
penalty <- function(prior, pi_s){
subset <- (prior != 1.0)
sum((prior-1)[subset]*log(pi_s[subset]))
}
#' @title compute log likelihood
#' @param L log likelihoods,
#' where the (i,k)th entry is the log probability of observation i
#' given it came from component k of g
#' @param p the vector of mixture proportions
#' @param prior the weight for the penalty
compute.log.lik <- function(lL, p, prior){
p = normalize(pmax(0,p))
temp = log(exp(lL$loglik_matrix) %*% p)+lL$lfactors
return(sum(temp) + penalty(prior, p))
# return(sum(temp))
}
normalize <- function(x){
x/sum(x)
}
mixture.M.rho.times <- function(X, Ulist, init_rho=0, tol=1e-5, prior = c('nullbiased', 'uniform')){
times = length(init_rho)
result = list()
loglik = c()
rho = c()
time.t = c()
converge.status = c()
for(i in 1:times){
out.time = system.time(result[[i]] <- mixture.M.rho(X, Ulist,
init_rho=init_rho[i],
prior=prior,
tol=tol))
time.t = c(time.t, out.time['elapsed'])
loglik = c(loglik, tail(result[[i]]$loglik, 1))
rho = c(rho, result[[i]]$rho)
}
if(abs(max(loglik) - min(loglik)) < 1e-4){
status = 'global'
}else{
status = 'local'
}
ind = which.max(loglik)
return(list(result = result[[ind]], status = status, loglik = loglik, rho=rho, time = time.t))
}
mixture.M.rho <- function(X, Ulist, init_rho=0, tol=1e-5, prior = c('nullbiased', 'uniform')) {
prior <- match.arg(prior)
m.model = fit_mash(X, Ulist, rho = init_rho, prior=prior)
pi_s = get_estimated_pi(m.model, dimension = 'all')
prior.v <- mashr:::set_prior(length(pi_s), prior)
# compute loglikelihood
loglik <- c()
loglik <- c(loglik, get_loglik(m.model)+penalty(prior.v, pi_s))
delta.ll <- 1
niter <- 0
rho = init_rho
while(delta.ll > tol){
# max_rho
rho <- E_rho(X, m.model)
m.model = fit_mash(X, Ulist, rho, prior=prior)
pi_s = get_estimated_pi(m.model, dimension = 'all')
loglik <- c(loglik, get_loglik(m.model)+penalty(prior.v, pi_s))
# Update delta
delta.ll <- loglik[length(loglik)] - loglik[length(loglik)-1]
niter <- niter + 1
}
return(list(pihat = normalize(pi_s), rho = rho, loglik=loglik))
}
E_rho <- function(X, m.model){
n = nrow(X)
post.m = m.model$result$PosteriorMean
post.sec = plyr::laply(1:n, function(i) m.model$result$PosteriorCov[,,i] + tcrossprod(post.m[i,])) # nx2x2 array
temp2 = -sum(X[,1]*X[,2]) + sum(X[,1]*post.m[,2]) + sum(X[,2]*post.m[,1]) - sum(post.sec[,1,2])
temp1 = sum(X[,1]^2 + X[,2]^2) - 2*sum(X[,1]*post.m[,1]) - 2*sum(X[,2]*post.m[,2]) + sum(post.sec[,1,1] + post.sec[,2,2])
rts = polyroot(c(temp2, temp1-n, temp2, n))
# check complex number
is.real = abs(Im(rts))<1e-12
if(sum(is.real) == 1){
return(Re(rts[is.real]))
}else{
print('3 real roots')
return(Re(rts))
}
}
fit_mash <- function(X, Ulist, rho, prior=c('nullbiased', 'uniform')){
m.data = mashr::mash_set_data(Bhat=X, Shat=1, V = matrix(c(1, rho, rho, 1), 2, 2))
m.model = mashr::mash(m.data, Ulist, prior=prior, verbose = FALSE, outputlevel = 3)
return(m.model)
}
set.seed(1)
n = 4000; p = 2
Sigma = matrix(c(1,0.5,0.5,1),p,p)
U0 = matrix(0,2,2)
U1 = U0; U1[1,1] = 1
U2 = U0; U2[2,2] = 1
U3 = matrix(1,2,2)
Utrue = list(U0=U0, U1=U1, U2=U2, U3=U3)
data = generate_data(n, p, Sigma, Utrue)
m.data = mash_set_data(data$Bhat, data$Shat)
U.c = cov_canonical(m.data)
result.mrho <- mixture.M.rho.times(m.data$Bhat, U.c)
The estimated \rho is 0.5060756. The running time is 65.74 seconds.
m.data.mrho = mash_set_data(data$Bhat, data$Shat, V = matrix(c(1,result.mrho$rho,result.mrho$rho,1),2,2))
U.c.mrho = cov_canonical(m.data.mrho)
m.mrho = mash(m.data.mrho, U.c, verbose= FALSE)
null.ind = which(apply(data$B,1,sum) == 0)
The log likelihood is -12302.54. There are 26 significant samples, 0 false positives. The RRMSE is 0.5820749.
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.14
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] mashr_0.2.18.0454 ashr_2.2-7
loaded via a namespace (and not attached):
[1] Rcpp_0.12.19 knitr_1.20 whisker_0.3-2
[4] magrittr_1.5 workflowr_1.1.1 REBayes_1.3
[7] MASS_7.3-50 pscl_1.5.2 doParallel_1.0.14
[10] SQUAREM_2017.10-1 lattice_0.20-35 foreach_1.4.4
[13] plyr_1.8.4 stringr_1.3.1 tools_3.5.1
[16] parallel_3.5.1 grid_3.5.1 R.oo_1.22.0
[19] rmeta_3.0 git2r_0.23.0 htmltools_0.3.6
[22] iterators_1.0.10 assertthat_0.2.0 abind_1.4-5
[25] yaml_2.2.0 rprojroot_1.3-2 digest_0.6.18
[28] Matrix_1.2-14 codetools_0.2-15 R.utils_2.7.0
[31] evaluate_0.12 rmarkdown_1.10 stringi_1.2.4
[34] compiler_3.5.1 Rmosek_8.0.69 backports_1.1.2
[37] R.methodsS3_1.7.1 mvtnorm_1.0-8 truncnorm_1.0-8
This reproducible R Markdown analysis was created with workflowr 1.1.1