Last updated: 2018-10-24
workflowr checks: (Click a bullet for more information)Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
set.seed(1)
The command set.seed(1)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: analysis/.Rhistory
Ignored: analysis/include/.DS_Store
Ignored: code/.DS_Store
Ignored: data/.DS_Store
Ignored: docs/.DS_Store
Ignored: output/.DS_Store
Untracked files:
Untracked: analysis/Classify.Rmd
Untracked: analysis/EstimateCorMaxEMGD.Rmd
Untracked: analysis/EstimateCorMaxGD.Rmd
Untracked: analysis/HierarchicalFlashSim.Rmd
Untracked: analysis/MashLowSignalGTEx4.Rmd
Untracked: analysis/Mash_GTEx.Rmd
Untracked: analysis/MeanAsh.Rmd
Untracked: analysis/OutlierDetection.Rmd
Untracked: analysis/OutlierDetection2.Rmd
Untracked: analysis/OutlierDetection3.Rmd
Untracked: analysis/OutlierDetection4.Rmd
Untracked: analysis/mash_missing_row.Rmd
Untracked: code/GTExNullModel.R
Untracked: code/MashClassify.R
Untracked: code/MashCorResult.R
Untracked: code/MashCormVResult.R
Untracked: code/MashNULLCorResult.R
Untracked: code/MashSource.R
Untracked: code/Weight_plot.R
Untracked: code/addemV.R
Untracked: code/estimate_cor.R
Untracked: code/generateDataV.R
Untracked: code/johnprocess.R
Untracked: code/mV.R
Untracked: code/sim_mean_sig.R
Untracked: code/summary.R
Untracked: data/Blischak_et_al_2015/
Untracked: data/scale_data.rds
Untracked: docs/figure/Classify.Rmd/
Untracked: docs/figure/OutlierDetection.Rmd/
Untracked: docs/figure/OutlierDetection2.Rmd/
Untracked: docs/figure/OutlierDetection3.Rmd/
Untracked: docs/figure/Test.Rmd/
Untracked: docs/figure/mash_missing_whole_row_5.Rmd/
Untracked: docs/include/
Untracked: output/AddEMV/
Untracked: output/CovED_UKBio_strong.rds
Untracked: output/CovED_UKBio_strong_Z.rds
Untracked: output/Flash_UKBio_strong.rds
Untracked: output/GTExNULLres/
Untracked: output/GTEx_2.5_nullData.rds
Untracked: output/GTEx_2.5_nullModel.rds
Untracked: output/GTEx_2.5_nullPermData.rds
Untracked: output/GTEx_2.5_nullPermModel.rds
Untracked: output/GTEx_3.5_nullData.rds
Untracked: output/GTEx_3.5_nullModel.rds
Untracked: output/GTEx_3.5_nullPermData.rds
Untracked: output/GTEx_3.5_nullPermModel.rds
Untracked: output/GTEx_3_nullData.rds
Untracked: output/GTEx_3_nullModel.rds
Untracked: output/GTEx_3_nullPermData.rds
Untracked: output/GTEx_3_nullPermModel.rds
Untracked: output/GTEx_4.5_nullData.rds
Untracked: output/GTEx_4.5_nullModel.rds
Untracked: output/GTEx_4.5_nullPermData.rds
Untracked: output/GTEx_4.5_nullPermModel.rds
Untracked: output/GTEx_4_nullData.rds
Untracked: output/GTEx_4_nullModel.rds
Untracked: output/GTEx_4_nullPermData.rds
Untracked: output/GTEx_4_nullPermModel.rds
Untracked: output/MASH.10.em2.result.rds
Untracked: output/MASH.10.mle.result.rds
Untracked: output/MashCorSim--midway/
Untracked: output/Mash_EE_Cov_0_plusR1.rds
Untracked: output/UKBio_mash_model.rds
Untracked: output/mVIterations/
Untracked: output/mVUlist/
Untracked: output/result.em.rds
Unstaged changes:
Deleted: analysis/EstimateCorEM3.Rmd
Modified: analysis/EstimateCorMaxEM2.Rmd
Modified: analysis/Mash_UKBio.Rmd
Modified: analysis/mash_missing_samplesize.Rmd
Modified: output/Flash_T2_0.rds
Modified: output/Flash_T2_0_mclust.rds
Modified: output/Mash_model_0_plusR1.rds
Modified: output/PresiAddVarCol.rds
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes. File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 8917cdc | zouyuxin | 2018-10-24 | wflow_publish(“analysis/EstimateCorMaxMV.Rmd”) |
html | 00f626f | zouyuxin | 2018-10-24 | Build site. |
Rmd | 52be1b5 | zouyuxin | 2018-10-24 | wflow_publish(“analysis/EstimateCorMaxMV.Rmd”) |
html | 83aa8e8 | zouyuxin | 2018-10-22 | Build site. |
Rmd | 9abd1d0 | zouyuxin | 2018-10-22 | wflow_publish(“analysis/EstimateCorMaxMV.Rmd”) |
html | 3889d07 | zouyuxin | 2018-10-22 | Build site. |
Rmd | 6a7014a | zouyuxin | 2018-10-22 | wflow_publish(“analysis/EstimateCorMaxMV.Rmd”) |
html | 8f39f1c | zouyuxin | 2018-10-09 | Build site. |
Rmd | 52d66f3 | zouyuxin | 2018-10-09 | wflow_publish(“analysis/EstimateCorMaxMV.Rmd”) |
html | 4e61be5 | zouyuxin | 2018-10-09 | Build site. |
Rmd | cd82d7e | zouyuxin | 2018-10-09 | wflow_publish(“analysis/EstimateCorMaxMV.Rmd”) |
html | e3b067e | zouyuxin | 2018-10-09 | Build site. |
Rmd | 032212c | zouyuxin | 2018-10-09 | wflow_publish(“analysis/EstimateCorMaxMV.Rmd”) |
library(mashr)
Loading required package: ashr
source('../code/generateDataV.R')
source('../code/summary.R')
We use EM algorithm to update ρ.
B is the n×R true value matrix. z is a length n vector.
p(\hat{\mathbf{B}}, \mathbf{B}, \mathbf{z}) h(\boldsymbol{\pi}) = \prod_{j=1}^{J} \prod_{p = 1}^{P}\left[\pi_{p} N_{R}(\hat{\mathbf{b}}_{j}; \mathbf{b}_{j}, \mathbf{S}_{j}\mathbf{V}\mathbf{S}_{j})N_{R}(\mathbf{b}_{j}; \mathbf{0}, \Sigma_{p})\right]^{\mathbb{I}(z_{j} = p)} \prod_{p=1}^{P} \pi_{p}^{\lambda_{p}-1}
\begin{align*} P(z_{j}=p, \mathbf{b}_{j}|\hat{\mathbf{b}}_{j}) &= \frac{P(z_{j}=p, \mathbf{b}_{j},\hat{\mathbf{b}}_{j})}{P(\hat{\mathbf{b}}_{j})} = \frac{P(\hat{\mathbf{b}}_{j}|\mathbf{b}_{j})P(\mathbf{b}_{j}|z_{j}=p) P(z_{j}=p)}{P(\hat{\mathbf{b}}_{j})} \\ &= \frac{\pi_{p} N_{R}(\hat{\mathbf{b}}_{j}; \mathbf{b}_{j}, \mathbf{S}_{j}\mathbf{V}\mathbf{S}_{j})N_{R}(\mathbf{b}_{j}; \mathbf{0}, \Sigma_{p})}{\sum_{p'}\pi_{p'} N_{R}(\hat{\mathbf{b}}_{j}; \mathbf{0}, \mathbf{S}_{j}\mathbf{V}\mathbf{S}_{j} + \Sigma_{p'})} \\ &= \frac{\pi_{p} N_{R}(\hat{\mathbf{b}}_{j}; \mathbf{0}, \mathbf{S}_{j}\mathbf{V}\mathbf{S}_{j} + \Sigma_{p})}{\sum_{p'}\pi_{p'} N_{R}(\hat{\mathbf{b}}_{j}; \mathbf{0}, \mathbf{S}_{j}\mathbf{V}\mathbf{S}_{j} + \Sigma_{p'})} \frac{N_{R}(\hat{\mathbf{b}}_{j}; \mathbf{b}_{j}, \mathbf{S}_{j}\mathbf{V}\mathbf{S}_{j})N_{R}(\mathbf{b}_{j}; \mathbf{0}, \Sigma_{p})}{N_{R}(\hat{\mathbf{b}}_{j}; \mathbf{0}, \mathbf{S}_{j}\mathbf{V}\mathbf{S}_{j} + \Sigma_{p})} \\ &= \gamma_{jp} P(\mathbf{b}_{j}|z_{j}=p, \hat{\mathbf{b}}_{j}) \\ &= P(z_{j}=p|\hat{\mathbf{b}}_{j}) P(\mathbf{b}_{j}|z_{j}=p, \hat{\mathbf{b}}_{j}) \end{align*}
E step: \begin{align*} \mathbb{E}_{\mathbf{z}, \mathbf{B}|\hat{\mathbf{B}}}\log p(\hat{\mathbf{B}}, \mathbf{B}, \mathbf{z}) h(\boldsymbol{\pi}) &= \mathbb{E}_{\mathbf{z}, \mathbf{B}|\hat{\mathbf{B}}} \{ \sum_{j=1}^{J}\sum_{p = 1}^{P} \mathbb{I}(z_{j} = p)\left[\log \pi_{p} + \log N_{R}(\hat{\mathbf{b}}_{j}; \mathbf{b}_{j}, \mathbf{S}_{j}\mathbf{V}\mathbf{S}_{j}) + \log N_{R}(\mathbf{b}_{j}; \mathbf{0}, \Sigma_{p})\right] + \sum_{p=1}^{P} (\lambda_{p}-1) \log \pi_{p} \} \\ &= \sum_{j=1}^{J} \sum_{p=1}^{P} \gamma_{jp} \left[\log \pi_{p} - \frac{1}{2}\log |\mathbf{V}| - \log |\mathbf{S}_{j}| - \frac{1}{2}\mathbb{E}_{\mathbf{b}_{j}|\hat{\mathbf{b}}_{j}, z_{j}=p}\left((\hat{\mathbf{b}}_{j}-\mathbf{b}_{j})^{T}\mathbf{S}_{j}^{-1}\mathbf{V}^{-1}\mathbf{S}_{j}^{-1}(\hat{\mathbf{b}}_{j}-\mathbf{b}_{j})\right) - \frac{1}{2}\log |\Sigma_{p}| - \frac{1}{2}\mathbb{E}_{\mathbf{b}_{j}|\hat{\mathbf{b}}_{j}, z_{j}=p}\left(\mathbf{b}_{j}^{T}\Sigma_{p}^{-1}\mathbf{b}_{j} \right) \right] + \sum_{p=1}^{P} (\lambda_{p}-1)\log \pi_{p} \end{align*}
Maximize with respect to V:
We have constraint on V, the diagonal of V must be 1. Let V = DCD, C is the covariance matrix, D = diag(1/sqrt(C_{jj})).
\begin{align*} f(\mathbf{C}) &= \sum_{j=1}^{J} \sum_{p=1}^{P} \gamma_{jp} \left[- \frac{1}{2}\log |\mathbf{D}\mathbf{C}\mathbf{D}| - \frac{1}{2}\mathbb{E}_{\mathbf{b}_{j}|\hat{\mathbf{b}}_{j}, z_{j}=p}\left((\hat{\mathbf{b}}_{j}-\mathbf{b}_{j})^{T}\mathbf{S}_{j}^{-1}\mathbf{D}^{-1}\mathbf{C}^{-1}\mathbf{D}^{-1}\mathbf{S}_{j}^{-1}(\hat{\mathbf{b}}_{j}-\mathbf{b}_{j})\right) \right] \\ &= \sum_{j=1}^{J} \sum_{p=1}^{P} \gamma_{jp} \left[- \frac{1}{2}\log |\mathbf{C}| - \log |\mathbf{D}|- \frac{1}{2}\mathbb{E}_{\mathbf{b}_{j}|\hat{\mathbf{b}}_{j}, z_{j}=p}\left((\hat{\mathbf{b}}_{j}-\mathbf{b}_{j})^{T}\mathbf{S}_{j}^{-1}\mathbf{D}^{-1}\mathbf{C}^{-1}\mathbf{D}^{-1}\mathbf{S}_{j}^{-1}(\hat{\mathbf{b}}_{j}-\mathbf{b}_{j})\right) \right] \\ f(\mathbf{C})' &= \sum_{j=1}^{J} \sum_{p=1}^{P} \gamma_{jp}\left[ -\frac{1}{2} \mathbf{C}^{-1} + \frac{1}{2} \mathbf{C}^{-1} \mathbf{D}^{-1}\mathbf{S}_{j}^{-1}\mathbb{E}\left((\hat{\mathbf{b}}_{j}-\mathbf{b}_{j}) (\hat{\mathbf{b}}_{j}-\mathbf{b}_{j})^{T}|\hat{\mathbf{b}}_{j}, z_{j} = p \right)\mathbf{S}_{j}^{-1}\mathbf{D}^{-1} \mathbf{C}^{-1} \right] = 0 \\ \mathbf{C} &= \frac{1}{J} \sum_{j=1}^{J} \sum_{p=1}^{P} \gamma_{jp}\mathbf{D}^{-1}\mathbf{S}_{j}^{-1}\mathbb{E}\left((\hat{\mathbf{b}}_{j}-\mathbf{b}_{j}) (\hat{\mathbf{b}}_{j}-\mathbf{b}_{j})^{T}|\hat{\mathbf{b}}_{j}, z_{j} = p \right)\mathbf{S}_{j}^{-1}\mathbf{D}^{-1} \\ &= \frac{1}{J} \mathbf{D}^{-1}\sum_{j=1}^{J} \mathbf{S}_{j}^{-1}\mathbb{E}\left((\hat{\mathbf{b}}_{j}-\mathbf{b}_{j}) (\hat{\mathbf{b}}_{j}-\mathbf{b}_{j})^{T}|\hat{\mathbf{b}}_{j}\right)\mathbf{S}_{j}^{-1}\mathbf{D}^{-1} \end{align*}
We can update \mathbf{C} and \mathbf{V} as \hat{\mathbf{C}}_{(t+1)} = \hat{\mathbf{D}}^{-1}_{(t)}\frac{1}{J} \left[\sum_{j=1}^{J} \mathbf{S}_{j}^{-1}\mathbb{E}\left[ (\hat{\mathbf{b}}_{j} - \mathbf{b}_{j})(\hat{\mathbf{b}}_{j} - \mathbf{b}_{j})^{T} | \hat{\mathbf{b}}_{j}\right]\mathbf{S}_{j}^{-1} \right] \hat{\mathbf{D}}^{-1}_{(t)} \\ \hat{\mathbf{D}}_{(t+1)} = diag(1/\sqrt{\hat{\mathbf{C}}_{(t+1)jj}}) \\ \hat{\mathbf{V}}_{(t+1)} = \hat{\mathbf{D}}_{(t+1)}\hat{\mathbf{C}}_{(t+1)}\hat{\mathbf{D}}_{(t+1)}
The resulting \hat{\mathbf{V}}_{(t+1)} is equivalent as \hat{\mathbf{C}}_{(t+1)} =\frac{1}{J} \left[\sum_{j=1}^{J} \mathbf{S}_{j}^{-1}\mathbb{E}\left[ (\hat{\mathbf{b}}_{j} - \mathbf{b}_{j})(\hat{\mathbf{b}}_{j} - \mathbf{b}_{j})^{T} | \hat{\mathbf{b}}_{j}\right]\mathbf{S}_{j}^{-1} \right] \\ \hat{\mathbf{D}}_{(t+1)} = diag(1/\sqrt{\hat{\mathbf{C}}_{(t+1)jj}}) \\ \hat{\mathbf{V}}_{(t+1)} = \hat{\mathbf{D}}_{(t+1)}\hat{\mathbf{C}}_{(t+1)}\hat{\mathbf{D}}_{(t+1)}
The estimated V maximize the lower bound of the log likelihood. We estimate \boldsymbol{\pi} from the log likelihood.
Given V, we estimate \boldsymbol{\pi} by max loglikelihood, which is a convex problem
Algorithm:
Input: X, Ulist, init_V
Given V, estimate pi by max loglikelihood (convex problem)
Compute loglikelihood
delta = 1
while delta > tol
M step: update C
Convert to V
Given V, estimate pi by max loglikelihood (convex problem)
Compute loglikelihood
Update delta
penalty <- function(prior, pi_s){
subset <- (prior != 1.0)
sum((prior-1)[subset]*log(pi_s[subset]))
}
mixture.MV <- function(mash.data, Ulist, init_V=diag(ncol(mash.data$Bhat)), max_iter = 500, tol=1e-5, prior = c('nullbiased', 'uniform'), cor = TRUE, track_fit = FALSE){
prior <- match.arg(prior)
tracking = list()
m.model = fit_mash_V(mash.data, Ulist, V = init_V, prior=prior)
pi_s = get_estimated_pi(m.model, dimension = 'all')
prior.v <- mashr:::set_prior(length(pi_s), prior)
# compute loglikelihood
log_liks <- numeric(max_iter+1)
log_liks[1] <- get_loglik(m.model)+penalty(prior.v, pi_s)
V = init_V
result = list(V = V, logliks = log_liks[1], mash.model = m.model)
for(i in 1:max_iter){
if(track_fit){
tracking[[i]] = result
}
# max_V
V = E_V(mash.data, m.model)
if(cor){
V = cov2cor(V)
}
m.model = fit_mash_V(mash.data, Ulist, V, prior=prior)
pi_s = get_estimated_pi(m.model, dimension = 'all')
log_liks[i+1] <- get_loglik(m.model)+penalty(prior.v, pi_s)
result = list(V = V, logliks = log_liks[1:(i+1)], mash.model = m.model)
# Update delta
delta.ll <- log_liks[i+1] - log_liks[i]
if(delta.ll<=tol) break;
}
if(track_fit){
result$trace = tracking
}
return(result)
}
E_V = function(mash.data, m.model){
n = mashr:::n_effects(mash.data)
Z = mash.data$Bhat/mash.data$Shat
post.m.shat = m.model$result$PosteriorMean / mash.data$Shat
post.sec.shat = plyr::laply(1:n, function(i) (t(m.model$result$PosteriorCov[,,i]/mash.data$Shat[i,])/mash.data$Shat[i,]) + tcrossprod(post.m.shat[i,])) # nx2x2 array
temp1 = crossprod(Z)
temp2 = crossprod(post.m.shat, Z) + crossprod(Z, post.m.shat)
temp3 = unname(plyr::aaply(post.sec.shat, c(2,3), sum))
(temp1 - temp2 + temp3)/n
}
fit_mash_V <- function(mash.data, Ulist, V, prior=c('nullbiased', 'uniform')){
m.data = mashr::mash_set_data(Bhat=mash.data$Bhat, Shat=mash.data$Shat, V = V, alpha = mash.data$alpha)
m.model = mashr::mash(m.data, Ulist, prior=prior, verbose = FALSE, outputlevel = 3)
return(m.model)
}
set.seed(1)
n = 4000; p = 2
Sigma = matrix(c(1,0.5,0.5,1),p,p)
U0 = matrix(0,2,2)
U1 = U0; U1[1,1] = 1
U2 = U0; U2[2,2] = 1
U3 = matrix(1,2,2)
Utrue = list(U0=U0, U1=U1, U2=U2, U3=U3)
data = generate_data(n, p, Sigma, Utrue)
m.data = mash_set_data(data$Bhat, data$Shat)
U.c = cov_canonical(m.data)
result.mV <- mixture.MV(m.data, U.c)
The estimated V is
result.mV$V
[,1] [,2]
[1,] 1.0000000 0.5087773
[2,] 0.5087773 1.0000000
m.mV = result.mV$mash.model
null.ind = which(apply(data$B,1,sum) == 0)
The log likelihood is -12302.52. There are 26 significant samples, 0 false positives. The RRMSE is 0.5822283.
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.14
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] mashr_0.2.18.0454 ashr_2.2-7
loaded via a namespace (and not attached):
[1] Rcpp_0.12.19 knitr_1.20 whisker_0.3-2
[4] magrittr_1.5 workflowr_1.1.1 REBayes_1.3
[7] MASS_7.3-50 pscl_1.5.2 doParallel_1.0.14
[10] SQUAREM_2017.10-1 lattice_0.20-35 foreach_1.4.4
[13] plyr_1.8.4 stringr_1.3.1 tools_3.5.1
[16] parallel_3.5.1 grid_3.5.1 R.oo_1.22.0
[19] rmeta_3.0 git2r_0.23.0 htmltools_0.3.6
[22] iterators_1.0.10 assertthat_0.2.0 abind_1.4-5
[25] yaml_2.2.0 rprojroot_1.3-2 digest_0.6.18
[28] Matrix_1.2-14 codetools_0.2-15 R.utils_2.7.0
[31] evaluate_0.12 rmarkdown_1.10 stringi_1.2.4
[34] compiler_3.5.1 Rmosek_8.0.69 backports_1.1.2
[37] R.methodsS3_1.7.1 mvtnorm_1.0-8 truncnorm_1.0-8
This reproducible R Markdown analysis was created with workflowr 1.1.1