Last updated: 2018-09-20

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(1)

    The command set.seed(1) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: f5b4335

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/.DS_Store
        Ignored:    analysis/.Rhistory
        Ignored:    analysis/include/.DS_Store
        Ignored:    code/.DS_Store
        Ignored:    data/.DS_Store
        Ignored:    docs/.DS_Store
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  analysis/Classify.Rmd
        Untracked:  analysis/EstimateCorEM.Rmd
        Untracked:  analysis/EstimateCorEM2.Rmd
        Untracked:  analysis/EstimateCorEM3.Rmd
        Untracked:  analysis/EstimateCorMaxEMGD.Rmd
        Untracked:  analysis/EstimateCorMaxGD.Rmd
        Untracked:  analysis/EstimateCorOptimEM.Rmd
        Untracked:  analysis/EstimateCorPrior.Rmd
        Untracked:  analysis/EstimateCorSol.Rmd
        Untracked:  analysis/HierarchicalFlashSim.Rmd
        Untracked:  analysis/MashLowSignalGTEx4.Rmd
        Untracked:  analysis/Mash_GTEx.Rmd
        Untracked:  analysis/MeanAsh.Rmd
        Untracked:  analysis/OutlierDetection.Rmd
        Untracked:  analysis/OutlierDetection2.Rmd
        Untracked:  analysis/OutlierDetection3.Rmd
        Untracked:  analysis/OutlierDetection4.Rmd
        Untracked:  analysis/Test.Rmd
        Untracked:  analysis/mash_missing_row.Rmd
        Untracked:  code/GTExNullModel.R
        Untracked:  code/MashClassify.R
        Untracked:  code/MashCorResult.R
        Untracked:  code/MashNULLCorResult.R
        Untracked:  code/MashSource.R
        Untracked:  code/Weight_plot.R
        Untracked:  code/addemV.R
        Untracked:  code/estimate_cor.R
        Untracked:  code/generateDataV.R
        Untracked:  code/johnprocess.R
        Untracked:  code/sim_mean_sig.R
        Untracked:  code/summary.R
        Untracked:  data/Blischak_et_al_2015/
        Untracked:  data/scale_data.rds
        Untracked:  docs/figure/Classify.Rmd/
        Untracked:  docs/figure/OutlierDetection.Rmd/
        Untracked:  docs/figure/OutlierDetection2.Rmd/
        Untracked:  docs/figure/OutlierDetection3.Rmd/
        Untracked:  docs/figure/Test.Rmd/
        Untracked:  docs/figure/mash_missing_whole_row_5.Rmd/
        Untracked:  docs/include/
        Untracked:  output/AddEMV/
        Untracked:  output/CovED_UKBio_strong.rds
        Untracked:  output/CovED_UKBio_strong_Z.rds
        Untracked:  output/Flash_UKBio_strong.rds
        Untracked:  output/GTExNULLres/
        Untracked:  output/GTEx_2.5_nullData.rds
        Untracked:  output/GTEx_2.5_nullModel.rds
        Untracked:  output/GTEx_2.5_nullPermData.rds
        Untracked:  output/GTEx_2.5_nullPermModel.rds
        Untracked:  output/GTEx_3.5_nullData.rds
        Untracked:  output/GTEx_3.5_nullModel.rds
        Untracked:  output/GTEx_3.5_nullPermData.rds
        Untracked:  output/GTEx_3.5_nullPermModel.rds
        Untracked:  output/GTEx_3_nullData.rds
        Untracked:  output/GTEx_3_nullModel.rds
        Untracked:  output/GTEx_3_nullPermData.rds
        Untracked:  output/GTEx_3_nullPermModel.rds
        Untracked:  output/GTEx_4.5_nullData.rds
        Untracked:  output/GTEx_4.5_nullModel.rds
        Untracked:  output/GTEx_4.5_nullPermData.rds
        Untracked:  output/GTEx_4.5_nullPermModel.rds
        Untracked:  output/GTEx_4_nullData.rds
        Untracked:  output/GTEx_4_nullModel.rds
        Untracked:  output/GTEx_4_nullPermData.rds
        Untracked:  output/GTEx_4_nullPermModel.rds
        Untracked:  output/MASH.10.em2.result.rds
        Untracked:  output/MASH.10.mle.result.rds
        Untracked:  output/MASHNULL.V.result.1.rds
        Untracked:  output/MASHNULL.V.result.10.rds
        Untracked:  output/MASHNULL.V.result.11.rds
        Untracked:  output/MASHNULL.V.result.12.rds
        Untracked:  output/MASHNULL.V.result.13.rds
        Untracked:  output/MASHNULL.V.result.14.rds
        Untracked:  output/MASHNULL.V.result.15.rds
        Untracked:  output/MASHNULL.V.result.16.rds
        Untracked:  output/MASHNULL.V.result.17.rds
        Untracked:  output/MASHNULL.V.result.18.rds
        Untracked:  output/MASHNULL.V.result.19.rds
        Untracked:  output/MASHNULL.V.result.2.rds
        Untracked:  output/MASHNULL.V.result.20.rds
        Untracked:  output/MASHNULL.V.result.3.rds
        Untracked:  output/MASHNULL.V.result.4.rds
        Untracked:  output/MASHNULL.V.result.5.rds
        Untracked:  output/MASHNULL.V.result.6.rds
        Untracked:  output/MASHNULL.V.result.7.rds
        Untracked:  output/MASHNULL.V.result.8.rds
        Untracked:  output/MASHNULL.V.result.9.rds
        Untracked:  output/MashCorSim--midway/
        Untracked:  output/Mash_EE_Cov_0_plusR1.rds
        Untracked:  output/UKBio_mash_model.rds
    
    Unstaged changes:
        Deleted:    analysis/EstimateCorMax.Rmd
        Modified:   analysis/EstimateCorMaxEM2.Rmd
        Deleted:    analysis/MashLowSignalGTEx3.5P.Rmd
        Modified:   analysis/Mash_UKBio.Rmd
        Modified:   analysis/mash_missing_samplesize.Rmd
        Modified:   output/Flash_T2_0.rds
        Modified:   output/Flash_T2_0_mclust.rds
        Modified:   output/Mash_model_0_plusR1.rds
        Modified:   output/PresiAddVarCol.rds
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd f5b4335 zouyuxin 2018-09-20 wflow_publish(“analysis/EstimateCorOptim.Rmd”)


library(mashr)
Loading required package: ashr
source('../code/generateDataV.R')
source('../code/summary.R')
library(kableExtra)
library(knitr)

We want to estimate \(\rho\) \[ \left(\begin{matrix} \hat{x} \\ \hat{y} \end{matrix} \right) | \left(\begin{matrix} x \\ y \end{matrix} \right) \sim N(\left(\begin{matrix} \hat{x} \\ \hat{y} \end{matrix} \right) ; \left(\begin{matrix} x \\ y \end{matrix} \right), \left( \begin{matrix} 1 & \rho \\ \rho & 1 \end{matrix} \right)) \] \[ \left(\begin{matrix} x \\ y \end{matrix} \right) \sim \sum_{k=0}^{K} \pi_{k} N( \left(\begin{matrix} x \\ y \end{matrix} \right); 0, U_{k} ) \] \(\Rightarrow\) \[ \left(\begin{matrix} \hat{x} \\ \hat{y} \end{matrix} \right) \sim \sum_{k=0}^{K} \pi_{k} N( \left(\begin{matrix} \hat{x} \\ \hat{y} \end{matrix} \right); 0, \left( \begin{matrix} 1 & \rho \\ \rho & 1 \end{matrix} \right) + U_{k} ) \] \[ \Sigma_{k} = \left( \begin{matrix} 1 & \rho \\ \rho & 1 \end{matrix} \right) + U_{k} = \left( \begin{matrix} 1 & \rho \\ \rho & 1 \end{matrix} \right) + \left( \begin{matrix} u_{k11} & u_{k12} \\ u_{k21} & u_{k22} \end{matrix} \right) = \left( \begin{matrix} 1+u_{k11} & \rho+u_{k12} \\ \rho+u_{k21} & 1+u_{k22} \end{matrix} \right) \] Let \(\sigma_{k11} = \sqrt{1+u_{k11}}\), \(\sigma_{k22} = \sqrt{1+u_{k22}}\), \(\phi_{k}=\frac{\rho+u_{k12}}{\sigma_{k11}\sigma_{k22}}\)

MLE

The loglikelihood is (with penalty) \[ l(\rho, \pi) = \sum_{i=1}^{n} \log \sum_{k=0}^{K} \pi_{k}N(x_{i}; 0, \Sigma_{k}) + \sum_{k=0}^{K} (\lambda_{k}-1) \log \pi_{k} \]

The penalty on \(\pi\) encourages over-estimation of \(\pi_{0}\), \(\lambda_{k}\geq 1\).

\[ l(\rho, \pi) = \sum_{i=1}^{n} \log \sum_{k=0}^{K} \pi_{k}\frac{1}{2\pi\sigma_{k11}\sigma_{k22}\sqrt{1-\phi_{k}^2}} \exp\left( -\frac{1}{2(1-\phi_{k}^2)}\left[ \frac{x_{i}^2}{\sigma_{k11}^2} + \frac{y_{i}^2}{\sigma_{k22}^2} - \frac{2\phi_{k}x_{i}y_{i}}{\sigma_{k11}\sigma_{k22}}\right] \right) + \sum_{k=0}^{K} (\lambda_{k}-1) \log \pi_{k} \]

Note: This probelm is convex with respect to \(\pi\). In terms of \(\rho\), the covenxity depends on the data.

Algorithm:

Input: X, init_rho, Ulist
Given rho, estimate pi by max loglikelihood (convex problem)
Compute loglikelihood
delta = 1
while delta > tol
  Given pi, estimate rho by max loglikelihood (optim function)
  Given rho, estimate pi by max loglikelihood (convex problem)
  Compute loglikelihood
  Update delta
#' @param rho the off diagonal element of V, 2 by 2 correlation matrix
#' @param Ulist a list of covariance matrices, U_{k}
get_sigma <- function(rho, Ulist){
  V <- matrix(c(1,rho,rho,1), 2,2)
  lapply(Ulist, function(U) U + V)
}

penalty <- function(prior, pi_s){
  subset <- (prior != 1.0)
  sum((prior-1)[subset]*log(pi_s[subset]))
}

#' @title compute log likelihood
#' @param L log likelihoods,
#' where the (i,k)th entry is the log probability of observation i
#' given it came from component k of g
#' @param p the vector of mixture proportions
#' @param prior the weight for the penalty
compute.log.lik <- function(lL, p, prior){
  p = normalize(pmax(0,p))
  temp = log(exp(lL$loglik_matrix) %*% p)+lL$lfactors
  return(sum(temp) + penalty(prior, p))
  # return(sum(temp))
}

normalize <- function(x){
  x/sum(x)
}
#' @title Optimize rho with several initial values
#' @param X data, Z scores
#' @param Ulist a list of covariance matrices
#' @param init_rho initial value for rho. The user could provide several initial values as a vector.
#' @param tol tolerance for optimizaiton stop
#' @param prior indicates what penalty to use on the likelihood, if any
#' @return list of result
#' \item{result}{result from the rho which gives the highest log likelihood}
#' \item{status}{whether the result is global max or local max}
#' \item{loglik}{the loglikelihood value}
#' \item{rho}{the estimated rho}
#' \item{time}{the running time for each initial rho}
#'
optimize_pi_rho_times <- function(X, Ulist, init_rho=0, tol=1e-5, prior=c("nullbiased", "uniform")){
  times = length(init_rho)
  result = list()
  loglik = c()
  rho = c()
  time.t = c()
  for(i in 1:times){
    out.time = system.time(result[[i]] <- optimize_pi_rho(X, Ulist,
                                                          init_rho=init_rho[i],
                                                          tol=tol,
                                                          prior=prior))
    time.t = c(time.t, out.time['elapsed'])
    loglik = c(loglik, tail(result[[i]]$loglik, n=1))
    rho = c(rho, result[[i]]$rho)
  }
  if(abs(max(loglik) - min(loglik)) < 1e-4){
    status = 'global'
  }else{
    status = 'local'
  }
  ind = which.max(loglik)
  return(list(result = result[[ind]], status = status, loglik = loglik, rho=rho, time = time.t))
}

#' @title optimize rho
#' @param X data, Z scores
#' @param Ulist a list of covariance matrices
#' @param init_rho an initial value for rho
#' @param tol tolerance for optimizaiton stop
#' @param prior indicates what penalty to use on the likelihood, if any
#' @return list of result
#' \item{pi}{estimated pi}
#' \item{rho}{estimated rho}
#' \item{loglik}{the loglikelihood value at each iteration}
#' \item{niter}{the number of iteration}
#'
optimize_pi_rho <- function(X, Ulist, init_rho=0, tol=1e-5, prior=c("nullbiased", "uniform")){
  prior <- match.arg(prior)
  if(length(Ulist) <= 1){
    stop('Please provide more U! With only one U, the correlation could be estimated directly using mle.')
  }
  prior <- mashr:::set_prior(length(Ulist), prior)
  
  Sigma <- get_sigma(init_rho, Ulist)
  lL <- t(plyr::laply(Sigma,function(U){mvtnorm::dmvnorm(x=X,sigma=U, log=TRUE)}))
  lfactors    <- apply(lL,1,max)
  matrix_llik <- lL - lfactors
  lL = list(loglik_matrix = matrix_llik,
              lfactors   = lfactors)
  pi_s <- mashr:::optimize_pi(exp(lL$loglik_matrix),prior=prior,optmethod='mixIP')
  
  log_liks <- c()
  ll       <- compute.log.lik(lL, pi_s, prior)
  log_liks <- c(log_liks, ll)
  delta.ll <- 1
  niter <- 0
  rho_s <- init_rho
  while( delta.ll > tol){
    # max_rho
    rho_s <- optim(rho_s, optimize_rho, lower = -1, upper = 1, X = X, Ulist=Ulist, pi_s = pi_s, prior = prior, method = 'Brent')$par
    
    Sigma <- get_sigma(rho_s, Ulist)
    lL <- t(plyr::laply(Sigma,function(U){mvtnorm::dmvnorm(x=X,sigma=U, log=TRUE)}))
    lfactors <- apply(lL,1,max)
    matrix_llik <- lL - lfactors
    lL = list(loglik_matrix = matrix_llik,
              lfactors   = lfactors)
    
    # max pi
    pi_s <- mashr:::optimize_pi(exp(lL$loglik_matrix),prior=prior,optmethod='mixIP')
    
    # compute loglike
    ll <- compute.log.lik(lL, pi_s, prior)
    log_liks <- c(log_liks, ll)
    # Update delta
    delta.ll <- log_liks[length(log_liks)] - log_liks[length(log_liks)-1]
    niter <- niter + 1
  }
  return(list(pi = pi_s, rho=rho_s, loglik = log_liks, niter = niter))
}

optimize_rho <- function(rho, X, Ulist, pi_s, prior){
  Sigma <- get_sigma(rho, Ulist)
  lL <- t(plyr::laply(Sigma,function(U){mvtnorm::dmvnorm(x=X,sigma=U, log=TRUE)}))
  lfactors <- apply(lL,1,max)
  matrix_llik <- lL - lfactors
  lL = list(loglik_matrix = matrix_llik,
              lfactors   = lfactors)
  
  return(-compute.log.lik(lL, pi_s, prior))
}

Data

\[ \hat{\beta}|\beta \sim N_{2}(\hat{\beta}; \beta, \left(\begin{matrix} 1 & 0.5 \\ 0.5 & 1 \end{matrix}\right)) \]

\[ \beta \sim \frac{1}{4}\delta_{0} + \frac{1}{4}N_{2}(0, \left(\begin{matrix} 1 & 0 \\ 0 & 0 \end{matrix}\right)) + \frac{1}{4}N_{2}(0, \left(\begin{matrix} 0 & 0 \\ 0 & 1 \end{matrix}\right)) + \frac{1}{4}N_{2}(0, \left(\begin{matrix} 1 & 1 \\ 1 & 1 \end{matrix}\right)) \]

n = 4000

set.seed(1)
n = 4000; p = 2
Sigma = matrix(c(1,0.5,0.5,1),p,p)
U0 = matrix(0,2,2)
U1 = U0; U1[1,1] = 1
U2 = U0; U2[2,2] = 1
U3 = matrix(1,2,2)
Utrue = list(U0=U0, U1=U1, U2=U2, U3=U3)
data = generate_data(n, p, Sigma, Utrue)
m.data = mash_set_data(data$Bhat, data$Shat)
U.c = cov_canonical(m.data)
grid = mashr:::autoselect_grid(m.data, sqrt(2))
Ulist = mashr:::normalize_Ulist(U.c)
xUlist = mashr:::expand_cov(Ulist,grid,usepointmass =  TRUE)

result.optim <- optimize_pi_rho(data$Bhat, xUlist, init_rho = 0)
# result <- optimize_pi_rho_times(data$Bhat, xUlist, init_rho = c(-0.7,0,0.7))
plot(result.optim$loglik)

The estimated \(\rho\) is 0.5062776.

m.data.optim = mash_set_data(data$Bhat, data$Shat, V = matrix(c(1,result.optim$rho,result.optim$rho,1),2,2))
U.c = cov_canonical(m.data.optim)
m.optim = mash(m.data.optim, U.c, verbose= FALSE)
null.ind = which(apply(data$B,1,sum) == 0)

The log likelihood is -1.23025410^{4}. There are 26 significant samples, 0 false positives. The RRMSE is 0.582086.

The estimated pi is

barplot(get_estimated_pi(m.optim), las=2, cex.names = 0.7, main='Optim', ylim=c(0,0.8))

The ROC curve:

m.data.correct = mash_set_data(data$Bhat, data$Shat, V=Sigma)
m.correct = mash(m.data.correct, U.c, verbose = FALSE)
m.correct.seq = ROC.table(data$B, m.correct)
m.optim.seq = ROC.table(data$B, m.optim)

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] knitr_1.20       kableExtra_0.9.0 mashr_0.2-12     ashr_2.2-13     

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.18      pillar_1.3.0      compiler_3.5.1   
 [4] git2r_0.23.0      plyr_1.8.4        workflowr_1.1.1  
 [7] R.methodsS3_1.7.1 R.utils_2.6.0     iterators_1.0.10 
[10] tools_3.5.1       digest_0.6.15     viridisLite_0.3.0
[13] tibble_1.4.2      evaluate_0.11     lattice_0.20-35  
[16] pkgconfig_2.0.2   rlang_0.2.2       Matrix_1.2-14    
[19] foreach_1.4.4     rstudioapi_0.7    yaml_2.2.0       
[22] parallel_3.5.1    mvtnorm_1.0-8     xml2_1.2.0       
[25] httr_1.3.1        stringr_1.3.1     REBayes_1.3      
[28] hms_0.4.2         rprojroot_1.3-2   grid_3.5.1       
[31] R6_2.2.2          rmarkdown_1.10    rmeta_3.0        
[34] readr_1.1.1       magrittr_1.5      whisker_0.3-2    
[37] scales_1.0.0      backports_1.1.2   codetools_0.2-15 
[40] htmltools_0.3.6   MASS_7.3-50       rvest_0.3.2      
[43] assertthat_0.2.0  colorspace_1.3-2  stringi_1.2.4    
[46] Rmosek_8.0.69     munsell_0.5.0     doParallel_1.0.11
[49] pscl_1.5.2        truncnorm_1.0-8   SQUAREM_2017.10-1
[52] crayon_1.3.4      R.oo_1.22.0      

This reproducible R Markdown analysis was created with workflowr 1.1.1