Last updated: 2018-10-22

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(1)

    The command set.seed(1) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 0ecda8f

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/.DS_Store
        Ignored:    analysis/.Rhistory
        Ignored:    analysis/include/.DS_Store
        Ignored:    code/.DS_Store
        Ignored:    data/.DS_Store
        Ignored:    docs/.DS_Store
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  analysis/Classify.Rmd
        Untracked:  analysis/EstimateCorEM3W2.Rmd
        Untracked:  analysis/EstimateCorMaxEMGD.Rmd
        Untracked:  analysis/EstimateCorMaxGD.Rmd
        Untracked:  analysis/EstimateCorPrior.Rmd
        Untracked:  analysis/EstimateCorSol.Rmd
        Untracked:  analysis/HierarchicalFlashSim.Rmd
        Untracked:  analysis/MashLowSignalGTEx4.Rmd
        Untracked:  analysis/Mash_GTEx.Rmd
        Untracked:  analysis/MeanAsh.Rmd
        Untracked:  analysis/OutlierDetection.Rmd
        Untracked:  analysis/OutlierDetection2.Rmd
        Untracked:  analysis/OutlierDetection3.Rmd
        Untracked:  analysis/OutlierDetection4.Rmd
        Untracked:  analysis/mash_missing_row.Rmd
        Untracked:  code/GTExNullModel.R
        Untracked:  code/MashClassify.R
        Untracked:  code/MashCorResult.R
        Untracked:  code/MashCormVResult.R
        Untracked:  code/MashNULLCorResult.R
        Untracked:  code/MashSource.R
        Untracked:  code/Weight_plot.R
        Untracked:  code/addemV.R
        Untracked:  code/estimate_cor.R
        Untracked:  code/generateDataV.R
        Untracked:  code/johnprocess.R
        Untracked:  code/mV.R
        Untracked:  code/sim_mean_sig.R
        Untracked:  code/summary.R
        Untracked:  data/Blischak_et_al_2015/
        Untracked:  data/scale_data.rds
        Untracked:  docs/figure/Classify.Rmd/
        Untracked:  docs/figure/OutlierDetection.Rmd/
        Untracked:  docs/figure/OutlierDetection2.Rmd/
        Untracked:  docs/figure/OutlierDetection3.Rmd/
        Untracked:  docs/figure/Test.Rmd/
        Untracked:  docs/figure/mash_missing_whole_row_5.Rmd/
        Untracked:  docs/include/
        Untracked:  output/AddEMV/
        Untracked:  output/CovED_UKBio_strong.rds
        Untracked:  output/CovED_UKBio_strong_Z.rds
        Untracked:  output/Flash_UKBio_strong.rds
        Untracked:  output/GTExNULLres/
        Untracked:  output/GTEx_2.5_nullData.rds
        Untracked:  output/GTEx_2.5_nullModel.rds
        Untracked:  output/GTEx_2.5_nullPermData.rds
        Untracked:  output/GTEx_2.5_nullPermModel.rds
        Untracked:  output/GTEx_3.5_nullData.rds
        Untracked:  output/GTEx_3.5_nullModel.rds
        Untracked:  output/GTEx_3.5_nullPermData.rds
        Untracked:  output/GTEx_3.5_nullPermModel.rds
        Untracked:  output/GTEx_3_nullData.rds
        Untracked:  output/GTEx_3_nullModel.rds
        Untracked:  output/GTEx_3_nullPermData.rds
        Untracked:  output/GTEx_3_nullPermModel.rds
        Untracked:  output/GTEx_4.5_nullData.rds
        Untracked:  output/GTEx_4.5_nullModel.rds
        Untracked:  output/GTEx_4.5_nullPermData.rds
        Untracked:  output/GTEx_4.5_nullPermModel.rds
        Untracked:  output/GTEx_4_nullData.rds
        Untracked:  output/GTEx_4_nullModel.rds
        Untracked:  output/GTEx_4_nullPermData.rds
        Untracked:  output/GTEx_4_nullPermModel.rds
        Untracked:  output/MASH.10.em2.result.rds
        Untracked:  output/MASH.10.mle.result.rds
        Untracked:  output/MashCorSim--midway/
        Untracked:  output/Mash_EE_Cov_0_plusR1.rds
        Untracked:  output/UKBio_mash_model.rds
        Untracked:  output/mVIterations/
        Untracked:  output/mVUlist/
        Untracked:  output/result.em.rds
    
    Unstaged changes:
        Modified:   analysis/EstimateCorMaxEM2.Rmd
        Modified:   analysis/EstimateCorMaxMV.Rmd
        Modified:   analysis/Mash_UKBio.Rmd
        Modified:   analysis/mash_missing_samplesize.Rmd
        Modified:   output/Flash_T2_0.rds
        Modified:   output/Flash_T2_0_mclust.rds
        Modified:   output/Mash_model_0_plusR1.rds
        Modified:   output/PresiAddVarCol.rds
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 0ecda8f zouyuxin 2018-10-22 wflow_publish(“analysis/EstimateCorMaxMVUlist.Rmd”)
    html eb57faf zouyuxin 2018-10-22 Build site.
    Rmd e061081 zouyuxin 2018-10-22 wflow_publish(“analysis/EstimateCorMaxMVUlist.Rmd”)


library(mashr)
Loading required package: ashr
library(ggplot2)
source('../code/generateDataV.R')
penalty <- function(prior, pi_s){
  subset <- (prior != 1.0)
  sum((prior-1)[subset]*log(pi_s[subset]))
}

mixture.MV <- function(mash.data, Ulist, init_V=diag(ncol(mash.data$Bhat)), max_iter = 500, tol=1e-5, prior = c('nullbiased', 'uniform'), cor = TRUE, track_fit = FALSE){
  prior <- match.arg(prior)
  tracking = list()

  m.model = fit_mash_V(mash.data, Ulist, V = init_V, prior=prior)
  pi_s = get_estimated_pi(m.model, dimension = 'all')
  prior.v <- mashr:::set_prior(length(pi_s), prior)
  
  # compute loglikelihood
  log_liks <- numeric(max_iter+1)
  log_liks[1] <- get_loglik(m.model)+penalty(prior.v, pi_s)
  V = init_V
  
  result = list(V = V, logliks = log_liks[1], mash.model = m.model)
  
  for(i in 1:max_iter){
    if(track_fit){
      tracking[[i]] = result
    }
    # max_V
    V = E_V(mash.data, m.model)
    if(cor){
        V = cov2cor(V)
    }
    m.model = fit_mash_V(mash.data, Ulist, V, prior=prior)
    pi_s = get_estimated_pi(m.model, dimension = 'all')

    log_liks[i+1] <- get_loglik(m.model)+penalty(prior.v, pi_s)
    
    result = list(V = V, logliks = log_liks[1:(i+1)], mash.model = m.model)

    # Update delta
    delta.ll <- log_liks[i+1] - log_liks[i]
    if(delta.ll<=tol) break;
  }
  
  if(track_fit){
    result$trace = tracking
  }
  
  return(result)
}

E_V = function(mash.data, m.model){
  n = mashr:::n_effects(mash.data)
  Z = mash.data$Bhat/mash.data$Shat
  post.m.shat = m.model$result$PosteriorMean / mash.data$Shat
  post.sec.shat = plyr::laply(1:n, function(i) (t(m.model$result$PosteriorCov[,,i]/mash.data$Shat[i,])/mash.data$Shat[i,]) + tcrossprod(post.m.shat[i,])) # nx2x2 array
  temp1 = crossprod(Z)
  temp2 = crossprod(post.m.shat, Z) + crossprod(Z, post.m.shat)
  temp3 = unname(plyr::aaply(post.sec.shat, c(2,3), sum))

  (temp1 - temp2 + temp3)/n
}

fit_mash_V <- function(mash.data, Ulist, V, prior=c('nullbiased', 'uniform')){
  m.data = mashr::mash_set_data(Bhat=mash.data$Bhat, Shat=mash.data$Shat, V = V, alpha = mash.data$alpha)
  m.model = mashr::mash(m.data, Ulist, prior=prior, verbose = FALSE, outputlevel = 3)
  return(m.model)
}

Data

Simple simulation in \(R^2\): \[ \hat{\beta}|\beta \sim N_{2}(\hat{\beta}; \beta, \left(\begin{matrix} 1 & 0.5 \\ 0.5 & 1 \end{matrix}\right)) \]

\[ \beta \sim \frac{1}{4}\delta_{0} + \frac{1}{4}N_{2}(0, \left(\begin{matrix} 1 & 0 \\ 0 & 0 \end{matrix}\right)) + \frac{1}{4}N_{2}(0, \left(\begin{matrix} 0 & 0 \\ 0 & 1 \end{matrix}\right)) + \frac{1}{4}N_{2}(0, \left(\begin{matrix} 1 & 1 \\ 1 & 1 \end{matrix}\right)) \]

set.seed(1)
n = 4000; p = 2
Sigma = matrix(c(1,0.5,0.5,1),p,p)
U0 = matrix(0,2,2)
U1 = U0; U1[1,1] = 1
U2 = U0; U2[2,2] = 1
U3 = matrix(1,2,2)
Utrue = list(U0=U0, U1=U1, U2=U2, U3=U3)
data = generate_data(n, p, Sigma, Utrue)
m.data = mash_set_data(data$Bhat, data$Shat)
U.c.full = cov_canonical(m.data)
U.c.redu = cov_canonical(m.data, cov_methods = c("equal_effects", "simple_het"))

Full VS Reduce

result.mV.full <- mixture.MV(m.data, U.c.full, init_V = estimate_null_correlation(m.data, apply_lower_bound = FALSE))
result.mV.redu <- mixture.MV(m.data, U.c.redu, init_V = estimate_null_correlation(m.data, apply_lower_bound = FALSE))
{
plot(result.mV.full$loglik, xlab = 'iter', ylab = 'loglik')
points(result.mV.redu$loglik, col='green')
legend('bottomright', legend=c('full', 'reduce'), col=c('black', 'green'), pch=c(1,1))
}

Expand here to see past versions of unnamed-chunk-6-1.png:
Version Author Date
eb57faf zouyuxin 2018-10-22

The estimated V from full Ulist is

result.mV.full$V
          [,1]      [,2]
[1,] 1.0000000 0.5095234
[2,] 0.5095234 1.0000000

The estimated V from reduced Ulist is

result.mV.redu$V
          [,1]      [,2]
[1,] 1.0000000 0.4815797
[2,] 0.4815797 1.0000000

The mash model from the full Ulist has the log likelihood -12302.51.

The mash model from the reduced Ulist has the log likelihood -12304.55.

m.data = mash_set_data(data$Bhat, data$Shat, V = result.mV.redu$V)
m.model = mash(m.data, U.c.full, verbose = FALSE)

Using the V from the reduced Ulist, the mash model using full Ulist has the log likelihood -12303.01.

Different number of iterations

I randomly generate 10 positive definite correlation matrices, V. The sample size is 4000.

\[ \hat{b}_{j}|b_{j} \sim N_{5}(z, S_{j}VS_{j}) \] \[ b_{j}\sim\frac{1}{4}\delta_{0} + \frac{1}{4}N_{5}(0,\left(\begin{matrix} 1 & \mathbf{0}_{1\times 4} \\ \mathbf{0}_{4\times 1} & \mathbf{0}_{4\times 4} \end{matrix}\right)) + \frac{1}{4}N_{5}(0,\left(\begin{matrix} \mathbf{1}_{2\times 2} & \mathbf{0}_{1\times 3} \\ \mathbf{0}_{3\times 1} & \mathbf{0}_{3\times 3} \end{matrix}\right)) + \frac{1}{4}N_{5}(0,\mathbf{1}_{5\times 5}) \]

set.seed(20181006)
n=4000; p = 5
U0 = matrix(0,p,p)
U1 = U0; U1[1,1] = 1
U2 = U0; U2[c(1:2), c(1:2)] = 1
U3 = matrix(1, p,p)
Utrue = list(U0 = U0, U1 = U1, U2 = U2, U3 = U3)

for(t in 1:10){
  print(paste0('Data: ', t))
  Vtrue = clusterGeneration::rcorrmatrix(p)
  data = generate_data(n, p, Vtrue, Utrue)
  # mash cov
  m.data = mash_set_data(Bhat = data$Bhat, Shat = data$Shat)
  m.1by1 = mash_1by1(m.data)
  strong = get_significant_results(m.1by1)

  U.pca = cov_pca(m.data, 3, subset = strong)
  U.ed = cov_ed(m.data, U.pca, subset = strong)
  U.c = cov_canonical(m.data)
  print('Method: mV')
  full.time = system.time(Vhat.mV.full <- mixture.MV(m.data, c(U.c, U.ed), init_V = estimate_null_correlation(m.data, apply_lower_bound = FALSE),
                        tol=1e-4, track_fit = FALSE))['elapsed']
  reduce.time = system.time(Vhat.mV.redu <- mixture.MV(m.data, cov_canonical(m.data, cov_methods = c("identity", "singletons")),
                            init_V = estimate_null_correlation(m.data, apply_lower_bound = FALSE),
                            tol=1e-4, track_fit = FALSE))['elapsed']
  saveRDS(list(V.true = Vtrue, V.mV.full = Vhat.mV.full, V.mV.redu = Vhat.mV.redu, data = data, strong=strong,
               full.time = full.time, reduce.time = reduce.time),
          paste0('../output/MASH.mV.result.',t,'.rds'))
}
files = dir("../output/mVUlist/"); files = files[grep("MASH.mV.result",files)]
times = length(files)
result = vector(mode="list",length = times)
for(i in 1:times) {
  result[[i]] = readRDS(paste("../output/mVUlist/", files[[i]], sep=""))
}
for(i in 1:times){
  m.data = mash_set_data(result[[i]]$data$Bhat, result[[i]]$data$Shat)
  result[[i]]$V.trun = estimate_null_correlation(m.data, apply_lower_bound = FALSE)
  
  m.1by1 = mash_1by1(m.data)
  strong = get_significant_results(m.1by1)
  
  U.c = cov_canonical(m.data)
  U.pca = cov_pca(m.data, 3, subset = strong)
  U.ed = cov_ed(m.data, U.pca, subset = strong)

  m.data.true = mash_set_data(Bhat = m.data$Bhat, Shat = m.data$Shat, V = result[[i]]$V.true)
  m.model.true = mash(m.data.true, c(U.c,U.ed), verbose = FALSE)
  
  m.data.trun = mash_set_data(Bhat = m.data$Bhat, Shat = m.data$Shat, V = result[[i]]$V.trun)
  m.model.trun = mash(m.data.trun, c(U.c,U.ed), verbose = FALSE)
  
  # mV
  # full
  m.model.full = result[[i]]$V.mV.full$mash.model
  
  # reduce
  m.model.redu = result[[i]]$V.mV.redu$mash.model
  m.data.redu = mash_set_data(Bhat = m.data$Bhat, Shat = m.data$Shat, V = result[[i]]$V.mV.redu$V)
  m.model.redu.full = mash(m.data.redu, c(U.c,U.ed), verbose = FALSE)
  
  result[[i]]$m.model = list(m.model.true = m.model.true, m.model.trun = m.model.trun,
                             m.model.full = m.model.full,
                             m.model.redu = m.model.redu, m.model.redu.full = m.model.redu.full)
}

Error

The Frobenius norm is

norm.type='F'
temp = matrix(0,nrow = times, ncol = 3)
for(i in 1:times){
  temp[i, ] = c(norm(result[[i]]$V.trun - result[[i]]$V.true, type = norm.type),
                norm(result[[i]]$V.mV.full$V - result[[i]]$V.true, type = norm.type), 
                norm(result[[i]]$V.mV.redu$V - result[[i]]$V.true, type = norm.type))
}
colnames(temp) = c('Trun', 'Full','Reduce')
temp = reshape2::melt(temp[])
colnames(temp) = c('Data', 'Method', 'FrobError')
ggplot(temp, aes(x = Data, y=FrobError, group = Method, color = Method)) + geom_line()

Expand here to see past versions of unnamed-chunk-13-1.png:
Version Author Date
eb57faf zouyuxin 2018-10-22

The spectral norm is

norm.type='2'
temp = matrix(0,nrow = times, ncol = 3)
for(i in 1:times){
  temp[i, ] = c(norm(result[[i]]$V.trun - result[[i]]$V.true, type = norm.type),
                norm(result[[i]]$V.mV.full$V - result[[i]]$V.true, type = norm.type), 
                norm(result[[i]]$V.mV.redu$V - result[[i]]$V.true, type = norm.type))
}
colnames(temp) = c('Trun', 'Full','Reduce')
temp = reshape2::melt(temp)
colnames(temp) = c('Data', 'Method', 'SpecError')
ggplot(temp, aes(x = Data, y=SpecError, group = Method, color = Method)) + geom_line()

Expand here to see past versions of unnamed-chunk-14-1.png:
Version Author Date
eb57faf zouyuxin 2018-10-22

Time

The total running time for each matrix is

mV.full.time = mV.redu.time = numeric(times)
for(i in 1:times){
  mV.full.time[i] = result[[i]]$full.time
  mV.redu.time[i] = result[[i]]$reduce.time
}
temp = cbind(mV.full.time, mV.redu.time)
colnames(temp) = c('Full', 'Reduce')
row.names(temp) = 1:10

temp = reshape2::melt(temp)
colnames(temp) = c('Data', 'Method', 'Time')
ggplot(temp, aes(x = Data, y=Time, group = Method, color = Method)) + geom_line()

Expand here to see past versions of unnamed-chunk-15-1.png:
Version Author Date
eb57faf zouyuxin 2018-10-22

mash log likelihood

temp = matrix(0,nrow = times, ncol = 5)
for(i in 1:times){
  temp[i, ] = c(get_loglik(result[[i]]$m.model$m.model.true),
                get_loglik(result[[i]]$m.model$m.model.trun),
                get_loglik(result[[i]]$m.model$m.model.full),
                get_loglik(result[[i]]$m.model$m.model.redu), 
                get_loglik(result[[i]]$m.model$m.model.redu.full))
}
colnames(temp) = c('True','Trun', 'Full','Reduce', 'Reduce+Full')
temp = reshape2::melt(temp)
colnames(temp) = c('Data', 'Method', 'loglikelihood')
ggplot(temp, aes(x = Data, y=loglikelihood, group = Method, color = Method)) + geom_line()

Expand here to see past versions of unnamed-chunk-16-1.png:
Version Author Date
eb57faf zouyuxin 2018-10-22

ROC

ROC.table = function(data, model){
  sign.test = data*model$result$PosteriorMean
  thresh.seq = seq(0, 1, by=0.005)[-1]
  m.seq = matrix(0,length(thresh.seq), 2)
  colnames(m.seq) = c('TPR', 'FPR')
  for(t in 1:length(thresh.seq)){
    m.seq[t,] = c(sum(sign.test>0 & model$result$lfsr <= thresh.seq[t])/sum(data!=0),
                  sum(data==0 & model$result$lfsr <=thresh.seq[t])/sum(data==0))
  }
  return(m.seq)
}
plotROC = function(data.true, result.model, title){
  m.true.seq = ROC.table(data.true, result.model$m.model.true)
  m.trun.seq = ROC.table(data.true, result.model$m.model.trun)
  m.mV.full.seq = ROC.table(data.true, result.model$m.model.full)
  m.mV.reduce.seq = ROC.table(data.true, result.model$m.model.redu)
  m.mV.reduce.full.seq = ROC.table(data.true, result.model$m.model.redu.full)

  plot(m.true.seq[,'FPR'], m.true.seq[,'TPR'],type='l',xlab = 'FPR', ylab='TPR',
       main=paste0(title, 'True Pos vs False Pos'), cex=1.5, lwd = 1.5)
  lines(m.mV.full.seq[,'FPR'], m.mV.full.seq[,'TPR'], col='red', lwd = 1.5)
  lines(m.mV.reduce.seq[,'FPR'], m.mV.reduce.seq[,'TPR'], col='darkorchid', lwd = 1.5)
  lines(m.mV.reduce.full.seq[,'FPR'], m.mV.reduce.full.seq[,'TPR'], col='darkgoldenrod', lwd = 1.5)
  lines(m.trun.seq[,'FPR'], m.trun.seq[,'TPR'], col='blue', lwd = 1.5)
  legend('bottomright', c('True','Trun', 'Full', 'Reduce', 'Reduce+Full'),col=c('black','blue', 'red','darkorchid','darkgoldenrod'),
           lty=c(1,1,1,1,1), lwd=c(1.5,1.5,1.5,1.5,1.5))
}
par(mfrow=c(1,2))
for(i in 1:times){
  plotROC(result[[i]]$data$B, result[[i]]$m.model, title=paste0('Data', i, ' '))
}

Expand here to see past versions of unnamed-chunk-18-1.png:
Version Author Date
eb57faf zouyuxin 2018-10-22

Expand here to see past versions of unnamed-chunk-18-2.png:
Version Author Date
eb57faf zouyuxin 2018-10-22

Expand here to see past versions of unnamed-chunk-18-3.png:
Version Author Date
eb57faf zouyuxin 2018-10-22

Expand here to see past versions of unnamed-chunk-18-4.png:
Version Author Date
eb57faf zouyuxin 2018-10-22

Expand here to see past versions of unnamed-chunk-18-5.png:
Version Author Date
eb57faf zouyuxin 2018-10-22

RRMSE

RRMSE = function(datatrue, dataobs, model){
  model = Filter(length, model)
  rrmse = numeric(length(model))
  for(k in 1:length(model)){
    rrmse[k] = sqrt(mean((datatrue - model[[k]]$result$PosteriorMean)^2)/mean((datatrue - dataobs)^2))
  }
  rrmse = as.matrix(t(rrmse))
  colnames(rrmse) = names(model)
  return(rrmse)
}
par(mfrow=c(1,2))
for(i in 1:times){
  rrmse = rbind(RRMSE(result[[i]]$data$B, result[[i]]$data$Bhat, result[[i]]$m.model))
  barplot(rrmse, ylim=c(0,(1+max(rrmse))/2), las=2, cex.names = 0.7, main='RRMSE')
}

Expand here to see past versions of unnamed-chunk-20-1.png:
Version Author Date
eb57faf zouyuxin 2018-10-22

Expand here to see past versions of unnamed-chunk-20-2.png:
Version Author Date
eb57faf zouyuxin 2018-10-22

Expand here to see past versions of unnamed-chunk-20-3.png:
Version Author Date
eb57faf zouyuxin 2018-10-22

Expand here to see past versions of unnamed-chunk-20-4.png:
Version Author Date
eb57faf zouyuxin 2018-10-22

Expand here to see past versions of unnamed-chunk-20-5.png:
Version Author Date
eb57faf zouyuxin 2018-10-22

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] ggplot2_3.0.0     mashr_0.2.18.0454 ashr_2.2-7       

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.5         purrr_0.2.5             
 [3] reshape2_1.4.3           lattice_0.20-35         
 [5] Rmosek_8.0.69            colorspace_1.3-2        
 [7] htmltools_0.3.6          yaml_2.2.0              
 [9] rlang_0.2.2              R.oo_1.22.0             
[11] pillar_1.3.0             glue_1.3.0              
[13] withr_2.1.2              R.utils_2.7.0           
[15] ExtremeDeconvolution_1.3 REBayes_1.3             
[17] bindrcpp_0.2.2           foreach_1.4.4           
[19] plyr_1.8.4               bindr_0.1.1             
[21] stringr_1.3.1            munsell_0.5.0           
[23] gtable_0.2.0             workflowr_1.1.1         
[25] R.methodsS3_1.7.1        mvtnorm_1.0-8           
[27] codetools_0.2-15         evaluate_0.12           
[29] labeling_0.3             knitr_1.20              
[31] pscl_1.5.2               doParallel_1.0.14       
[33] parallel_3.5.1           Rcpp_0.12.19            
[35] scales_1.0.0             backports_1.1.2         
[37] rmeta_3.0                truncnorm_1.0-8         
[39] abind_1.4-5              digest_0.6.18           
[41] stringi_1.2.4            dplyr_0.7.6             
[43] grid_3.5.1               rprojroot_1.3-2         
[45] tools_3.5.1              magrittr_1.5            
[47] lazyeval_0.2.1           tibble_1.4.2            
[49] crayon_1.3.4             whisker_0.3-2           
[51] pkgconfig_2.0.2          MASS_7.3-50             
[53] Matrix_1.2-14            SQUAREM_2017.10-1       
[55] assertthat_0.2.0         rmarkdown_1.10          
[57] iterators_1.0.10         R6_2.3.0                
[59] git2r_0.23.0             compiler_3.5.1          

This reproducible R Markdown analysis was created with workflowr 1.1.1