Last updated: 2018-11-29
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(1)
The command set.seed(1)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 521f70b
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: analysis/.Rhistory
Ignored: analysis/include/.DS_Store
Ignored: code/.DS_Store
Ignored: data/.DS_Store
Ignored: docs/.DS_Store
Ignored: output/.DS_Store
Untracked files:
Untracked: analysis/Classify.Rmd
Untracked: analysis/EstimateCorMLECompare.Rmd
Untracked: analysis/EstimateCorMash.Rmd
Untracked: analysis/EstimateCorMaxGD.Rmd
Untracked: analysis/EstimateCorMaxMCMash.Rmd
Untracked: analysis/HierarchicalFlashSim.Rmd
Untracked: analysis/MashLowSignalGTEx4.Rmd
Untracked: analysis/Mash_GTEx.Rmd
Untracked: analysis/MeanAsh.Rmd
Untracked: analysis/OutlierDetection.Rmd
Untracked: analysis/OutlierDetection2.Rmd
Untracked: analysis/OutlierDetection3.Rmd
Untracked: analysis/OutlierDetection4.Rmd
Untracked: analysis/mash_missing_row.Rmd
Untracked: code/GTExNullModel.R
Untracked: code/MashClassify.R
Untracked: code/MashCorResult.R
Untracked: code/MashCormVResult.R
Untracked: code/MashNULLCorResult.R
Untracked: code/MashSource.R
Untracked: code/Weight_plot.R
Untracked: code/addemV.R
Untracked: code/estimate_cor.R
Untracked: code/generateDataV.R
Untracked: code/johnprocess.R
Untracked: code/mV.R
Untracked: code/sim_mean_sig.R
Untracked: code/summary.R
Untracked: data/Blischak_et_al_2015/
Untracked: data/scale_data.rds
Untracked: docs/figure/Classify.Rmd/
Untracked: docs/figure/OutlierDetection.Rmd/
Untracked: docs/figure/OutlierDetection2.Rmd/
Untracked: docs/figure/OutlierDetection3.Rmd/
Untracked: docs/figure/Test.Rmd/
Untracked: docs/figure/mash_missing_whole_row_5.Rmd/
Untracked: docs/include/
Untracked: output/AddEMV/
Untracked: output/CovED_UKBio_strong.rds
Untracked: output/CovED_UKBio_strong_Z.rds
Untracked: output/EstCorMLECompare/
Untracked: output/Flash_UKBio_strong.rds
Untracked: output/GTExNULLres/
Untracked: output/GTEx_2.5_nullData.rds
Untracked: output/GTEx_2.5_nullModel.rds
Untracked: output/GTEx_2.5_nullPermData.rds
Untracked: output/GTEx_2.5_nullPermModel.rds
Untracked: output/GTEx_3.5_nullData.rds
Untracked: output/GTEx_3.5_nullModel.rds
Untracked: output/GTEx_3.5_nullPermData.rds
Untracked: output/GTEx_3.5_nullPermModel.rds
Untracked: output/GTEx_3_nullData.rds
Untracked: output/GTEx_3_nullModel.rds
Untracked: output/GTEx_3_nullPermData.rds
Untracked: output/GTEx_3_nullPermModel.rds
Untracked: output/GTEx_4.5_nullData.rds
Untracked: output/GTEx_4.5_nullModel.rds
Untracked: output/GTEx_4.5_nullPermData.rds
Untracked: output/GTEx_4.5_nullPermModel.rds
Untracked: output/GTEx_4_nullData.rds
Untracked: output/GTEx_4_nullModel.rds
Untracked: output/GTEx_4_nullPermData.rds
Untracked: output/GTEx_4_nullPermModel.rds
Untracked: output/MASH.10.em2.result.rds
Untracked: output/MASH.10.mle.result.rds
Untracked: output/MashCorSim--midway/
Untracked: output/Mash_EE_Cov_0_plusR1.rds
Untracked: output/UKBio_mash_model.rds
Untracked: output/mVIterations/
Untracked: output/mVMLEsubset/
Untracked: output/mVUlist/
Untracked: output/result.em.rds
Unstaged changes:
Modified: analysis/EstimateCorMaxMVSample.Rmd
Modified: analysis/Mash_UKBio.Rmd
Modified: analysis/mash_missing_samplesize.Rmd
Modified: output/Flash_T2_0.rds
Modified: output/Flash_T2_0_mclust.rds
Modified: output/Mash_model_0_plusR1.rds
Modified: output/PresiAddVarCol.rds
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 521f70b | zouyuxin | 2018-11-29 | wflow_publish(“analysis/EstimateCorMaxMVProblem.Rmd”) |
A brief introduction of the algorithm to estimate the null correlation matrix \(V\) is in pdf. This is the current algorithm we used in mash
. However, I encountered a problem with one simulated dataset. The log likelihood decreases during the update of parameters.
The simulated data is \[ \hat{\mathbf{c}}_{j} | \mathbf{c}_{j} \sim N_{10}(\mathbf{c}_{j}, I) \\ \mathbf{c}_{j} = \mu_{j}\mathbf{1} \] We subtract the median from each observation, and estimate \(V\).
library(mashr)
Loading required package: ashr
set.seed(1)
data = sim_contrast1(nsamp = 10000, ncond = 10, err_sd = 1)
colnames(data$C) = colnames(data$Chat) = colnames(data$Shat) = 1:10
m.data = mash_set_data(data$Chat, data$Shat)
delta.median = t(apply(data$C, 1, function(x) x - median(x)))
deltahat.median = t(apply(data$Chat, 1, function(x) x - median(x)))
data.median = mash_set_data(deltahat.median, Shat = 1, alpha = 1)
U.c = cov_canonical(data.median)
Using the current algorithm, the log likelihood decreases.
estV.orig = estimate_null_correlation(data.median, U.c)
plot(estV.orig$loglik)
The problem is the EM step to update V.
source('../code/generateDataV.R')
set.seed(1)
Sigma = cbind(c(1,0.7,0.2), c(0.7,1,0.4), c(0.2,0.4,1))
U0 = matrix(0,3,3)
U1 = matrix(0,3,3); U1[1,1] = 1
U2 = diag(3); U2[3,3] = 0
U3 = matrix(1,3,3)
data = generate_data(n=4000, p=3, V=Sigma, Utrue = list(U0=U0, U1=U1,U2=U2,U3=U3))
m.data = mash_set_data(data$Bhat, data$Shat)
m.1by1 = mash_1by1(m.data)
strong = get_significant_results(m.1by1)
U.pca = cov_pca(m.data, 3, subset = strong)
U.ed = cov_ed(m.data, U.pca, subset = strong)
U.c = cov_canonical(m.data)
Vhat = estimate_null_correlation(m.data, c(U.c,U.ed), max_iter = 100, tol=1e-2)
plot(Vhat$loglik)
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.14.1
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] mashr_0.2.19.0547 ashr_2.2-23
loaded via a namespace (and not attached):
[1] Rcpp_1.0.0 knitr_1.20 whisker_0.3-2
[4] magrittr_1.5 workflowr_1.1.1 REBayes_1.3
[7] MASS_7.3-50 pscl_1.5.2 doParallel_1.0.14
[10] SQUAREM_2017.10-1 lattice_0.20-35 foreach_1.4.4
[13] plyr_1.8.4 stringr_1.3.1 tools_3.5.1
[16] parallel_3.5.1 grid_3.5.1 R.oo_1.22.0
[19] rmeta_3.0 git2r_0.23.0 htmltools_0.3.6
[22] iterators_1.0.10 assertthat_0.2.0 abind_1.4-5
[25] yaml_2.2.0 rprojroot_1.3-2 digest_0.6.18
[28] Matrix_1.2-14 codetools_0.2-15 R.utils_2.7.0
[31] evaluate_0.12 rmarkdown_1.10 stringi_1.2.4
[34] compiler_3.5.1 Rmosek_8.0.69 backports_1.1.2
[37] R.methodsS3_1.7.1 mvtnorm_1.0-8 truncnorm_1.0-8
This reproducible R Markdown analysis was created with workflowr 1.1.1