Last updated: 2018-10-09
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(1)
The command set.seed(1)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 032212c
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: analysis/.Rhistory
Ignored: analysis/include/.DS_Store
Ignored: code/.DS_Store
Ignored: data/.DS_Store
Ignored: docs/.DS_Store
Ignored: output/.DS_Store
Untracked files:
Untracked: analysis/Classify.Rmd
Untracked: analysis/EstimateCorEM3W2.Rmd
Untracked: analysis/EstimateCorMaxEMGD.Rmd
Untracked: analysis/EstimateCorMaxGD.Rmd
Untracked: analysis/EstimateCorOptimEM.Rmd
Untracked: analysis/EstimateCorPrior.Rmd
Untracked: analysis/EstimateCorSol.Rmd
Untracked: analysis/HierarchicalFlashSim.Rmd
Untracked: analysis/MashLowSignalGTEx4.Rmd
Untracked: analysis/Mash_GTEx.Rmd
Untracked: analysis/MeanAsh.Rmd
Untracked: analysis/OutlierDetection.Rmd
Untracked: analysis/OutlierDetection2.Rmd
Untracked: analysis/OutlierDetection3.Rmd
Untracked: analysis/OutlierDetection4.Rmd
Untracked: analysis/mash_missing_row.Rmd
Untracked: code/GTExNullModel.R
Untracked: code/MASH.result.1.rds
Untracked: code/MashClassify.R
Untracked: code/MashCorResult.R
Untracked: code/MashNULLCorResult.R
Untracked: code/MashSource.R
Untracked: code/Weight_plot.R
Untracked: code/addemV.R
Untracked: code/estimate_cor.R
Untracked: code/generateDataV.R
Untracked: code/johnprocess.R
Untracked: code/sim_mean_sig.R
Untracked: code/summary.R
Untracked: data/Blischak_et_al_2015/
Untracked: data/scale_data.rds
Untracked: docs/figure/Classify.Rmd/
Untracked: docs/figure/OutlierDetection.Rmd/
Untracked: docs/figure/OutlierDetection2.Rmd/
Untracked: docs/figure/OutlierDetection3.Rmd/
Untracked: docs/figure/Test.Rmd/
Untracked: docs/figure/mash_missing_whole_row_5.Rmd/
Untracked: docs/include/
Untracked: output/AddEMV/
Untracked: output/CovED_UKBio_strong.rds
Untracked: output/CovED_UKBio_strong_Z.rds
Untracked: output/Flash_UKBio_strong.rds
Untracked: output/GTExNULLres/
Untracked: output/GTEx_2.5_nullData.rds
Untracked: output/GTEx_2.5_nullModel.rds
Untracked: output/GTEx_2.5_nullPermData.rds
Untracked: output/GTEx_2.5_nullPermModel.rds
Untracked: output/GTEx_3.5_nullData.rds
Untracked: output/GTEx_3.5_nullModel.rds
Untracked: output/GTEx_3.5_nullPermData.rds
Untracked: output/GTEx_3.5_nullPermModel.rds
Untracked: output/GTEx_3_nullData.rds
Untracked: output/GTEx_3_nullModel.rds
Untracked: output/GTEx_3_nullPermData.rds
Untracked: output/GTEx_3_nullPermModel.rds
Untracked: output/GTEx_4.5_nullData.rds
Untracked: output/GTEx_4.5_nullModel.rds
Untracked: output/GTEx_4.5_nullPermData.rds
Untracked: output/GTEx_4.5_nullPermModel.rds
Untracked: output/GTEx_4_nullData.rds
Untracked: output/GTEx_4_nullModel.rds
Untracked: output/GTEx_4_nullPermData.rds
Untracked: output/GTEx_4_nullPermModel.rds
Untracked: output/MASH.10.em2.result.rds
Untracked: output/MASH.10.mle.result.rds
Untracked: output/MASHNULL.V.result.1.rds
Untracked: output/MASHNULL.V.result.10.rds
Untracked: output/MASHNULL.V.result.11.rds
Untracked: output/MASHNULL.V.result.12.rds
Untracked: output/MASHNULL.V.result.13.rds
Untracked: output/MASHNULL.V.result.14.rds
Untracked: output/MASHNULL.V.result.15.rds
Untracked: output/MASHNULL.V.result.16.rds
Untracked: output/MASHNULL.V.result.17.rds
Untracked: output/MASHNULL.V.result.18.rds
Untracked: output/MASHNULL.V.result.19.rds
Untracked: output/MASHNULL.V.result.2.rds
Untracked: output/MASHNULL.V.result.20.rds
Untracked: output/MASHNULL.V.result.3.rds
Untracked: output/MASHNULL.V.result.4.rds
Untracked: output/MASHNULL.V.result.5.rds
Untracked: output/MASHNULL.V.result.6.rds
Untracked: output/MASHNULL.V.result.7.rds
Untracked: output/MASHNULL.V.result.8.rds
Untracked: output/MASHNULL.V.result.9.rds
Untracked: output/MashCorSim--midway/
Untracked: output/Mash_EE_Cov_0_plusR1.rds
Untracked: output/UKBio_mash_model.rds
Untracked: output/result.em.rds
Unstaged changes:
Deleted: analysis/EstimateCorMax.Rmd
Modified: analysis/EstimateCorMaxEM2.Rmd
Modified: analysis/EstimateCorMaxMash.Rmd
Deleted: analysis/MashLowSignalGTEx3.5P.Rmd
Modified: analysis/Mash_UKBio.Rmd
Modified: analysis/mash_missing_samplesize.Rmd
Modified: output/Flash_T2_0.rds
Modified: output/Flash_T2_0_mclust.rds
Modified: output/Mash_model_0_plusR1.rds
Modified: output/PresiAddVarCol.rds
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 032212c | zouyuxin | 2018-10-09 | wflow_publish(“analysis/EstimateCorMaxMV.Rmd”) |
Last updated: 2018-10-09
library(mashr)
Loading required package: ashr
source('../code/generateDataV.R')
source('../code/summary.R')
We use EM algorithm to update \(\rho\).
B is the \(n\times R\) true value matrix. \(\mathbf{z}\) is a length n vector.
\[ P(\hat{B},B|\rho, \pi) = \prod_{i=1}^{n} \left[N(\hat{b}_{i}; b_{i}, V)\sum_{p=0}^{P} \pi_{p} N(b_{i}; 0, \Sigma_{p})\right] \]
\[ \begin{align*} \mathbb{E}_{B|\hat{B}} \log P(\hat{B},B|\rho, \pi) &= \sum_{i=1}^{n} \mathbb{E}_{b_{i}|\hat{b}_{i}}\left[ \log N(\hat{b}_{i}; b_{i}, V) + \log \sum_{p=0}^{P} \pi_{p} N(b_{i}; 0, \Sigma_{p}) \right] \\ &= \sum_{i=1}^{n} \mathbb{E}_{b_{i}|\hat{b}_{i}}\log N(\hat{b}_{i}; b_{i}, V) + \sum_{i=1}^{n}\mathbb{E}_{b_{i}|\hat{b}_{i}}\log \sum_{p=0}^{P} \pi_{p} N(b_{i}; 0, \Sigma_{p}) \end{align*} \]
\(V\) depends on the first term only. Let \(\mu_{i} = \mathbb{E}_{b_{i}|\hat{b}_{i}}(b_{i})\) \[ \begin{align*} \log N(\hat{b}_{i}; b_{i}, V) &= -\frac{R}{2}\log 2\pi -\frac{1}{2}\log |V| - \frac{1}{2}(\hat{b}_{i}-b_{i})^{T}V^{-1}(\hat{b}_{i}-b_{i}) \\ &= -\frac{R}{2}\log 2\pi -\frac{1}{2}\log |V| - \frac{1}{2}\hat{b}_{i}^{T}V^{-1}\hat{b}_{i} + \frac{1}{2}b_{i}^{T}V^{-1}\hat{b}_{i} + \frac{1}{2}\hat{b}_{i}^{T}V^{-1}b_{i} -\frac{1}{2}b_{i}^{T}V^{-1}b_{i} \\ \mathbb{E}_{b_{i}|\hat{b}_{i}} \log N(\hat{b}_{i}; b_{i}, V) &= -\frac{R}{2}\log 2\pi -\frac{1}{2}\log |V| - \frac{1}{2}\hat{b}_{i}^{T}V^{-1}\hat{b}_{i} + \frac{1}{2}\mu_{i}^{T}V^{-1}\hat{b}_{i} + \frac{1}{2}\hat{b}_{i}^{T}V^{-1}\mu_{i} -\frac{1}{2}tr(V^{-1}\mathbb{E}_{b_{i}|\hat{b}_{i}}(b_{i}b_{i}^{T})) \end{align*} \]
Maximize with respect to V:
We have constraint on V, the diagonal of V must be 1. Let \(V = DCD\), C is the covariance matrix, D = \(diag(1/sqrt(C_{jj}))\).
\[ f(C) = \sum_{i=1}^{n} -\frac{R}{2}\log 2\pi -\frac{1}{2}\log |C|- \log |D| - \frac{1}{2}\hat{b}_{i}^{T}D^{-1}C^{-1}D^{-1}\hat{b}_{i} + \frac{1}{2}\mu_{i}^{T}D^{-1}C^{-1}D^{-1}\hat{b}_{i} + \frac{1}{2}\hat{b}_{i}^{T}D^{-1}C^{-1}D^{-1}\mu_{i} -\frac{1}{2}tr(D^{-1}C^{-1}D^{-1}\mathbb{E}_{b_{i}|\hat{b}_{i}}(b_{i}b_{i}^{T})) \]
\[ \begin{align*} f(C)' &= \sum_{i=1}^{n} -\frac{1}{2}C^{-1} + \frac{1}{2}C^{-1}D^{-1}\hat{b}_{i}\hat{b}_{i}^{T}D^{-1}C^{-1} - \frac{1}{2} C^{-1}D^{-1}\mu_{i}\hat{b}_{i}^{T}D^{-1}C^{-1} - \frac{1}{2}C^{-1}D^{-1}\hat{b}_{i}\mu_{i}^{T}D^{-1}C^{-1} + \frac{1}{2} C^{-1}D^{-1}\mathbb{E}(b_{i}b_{i}^{T}|\hat{b}_{i})D^{-1}C^{-1} = 0 \\ 0 &= \sum_{i=1}^{n} -\frac{1}{2}C + \frac{1}{2}D^{-1}\hat{b}_{i}\hat{b}_{i}^{T}D^{-1} - \frac{1}{2}D^{-1}\mu_{i}\hat{b}_{i}^{T}D^{-1} - \frac{1}{2}D^{-1}\hat{b}_{i}\mu_{i}^{T}D^{-1} + \frac{1}{2} D^{-1}\mathbb{E}(b_{i}b_{i}^{T}|\hat{b}_{i})D^{-1} \\ \hat{C} &= \frac{1}{n} \sum_{i=1}^{n} \left[D^{-1}\hat{b}_{i}\hat{b}_{i}^{T}D^{-1} - D^{-1}\mu_{i}\hat{b}_{i}^{T}D^{-1} - D^{-1}\hat{b}_{i}\mu_{i}^{T}D^{-1} + D^{-1}\mathbb{E}(b_{i}b_{i}^{T}|\hat{b}_{i})D^{-1} \right] \\ &= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[ (D^{-1}(\hat{b}_{i} - b_{i}))(D^{-1}(\hat{b}_{i} - b_{i}))^{T} | \hat{b}_{i}\right] \\ &= D^{-1}\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[ (\hat{b}_{i} - b_{i})(\hat{b}_{i} - b_{i})^{T} | \hat{b}_{i}\right]D^{-1} \end{align*} \]
We can update C and V as \[ \hat{C}_{(t+1)} = \hat{D}^{-1}_{(t)}\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[ (\hat{b}_{i} - b_{i})(\hat{b}_{i} - b_{i})^{T} | \hat{b}_{i}\right]\hat{D}^{-1}_{(t)} \\ \hat{D}_{(t+1)} = diag(1/\sqrt{\hat{C}_{(t+1)jj}}) \\ \hat{V}_{(t+1)} = \hat{D}_{(t+1)}\hat{C}_{(t+1)}\hat{D}_{(t+1)} \]
The resulting \(\hat{V}_{(t+1)}\) is equivalent as \[ \hat{C}_{(t+1)} = \frac{1}{n}\sum_{i=1}^{n} \mathbb{E}\left[ (\hat{b}_{i} - b_{i})(\hat{b}_{i} - b_{i})^{T} | \hat{b}_{i}\right] \\ \hat{D}_{(t+1)} = diag(1/\sqrt{\hat{C}_{(t+1)jj}}) \\ \hat{V}_{(t+1)} = \hat{D}_{(t+1)}\hat{C}_{(t+1)}\hat{D}_{(t+1)} \]
It is hard to estimate \(\boldsymbol{\pi}\) from the second term, \(\sum_{i=1}^{n}\mathbb{E}_{b_{i}|\hat{b}_{i}}\log \sum_{p=0}^{P} \pi_{p} N(b_{i}; 0, \Sigma_{p})\).
Given V, we estimate \(\boldsymbol{\pi}\) by max loglikelihood, which is a convex problem
Algorithm:
Input: X, Ulist, init_V
Given V, estimate pi by max loglikelihood (convex problem)
Compute loglikelihood
delta = 1
while delta > tol
M step: update C
Convert to V
Given V, estimate pi by max loglikelihood (convex problem)
Compute loglikelihood
Update delta
penalty <- function(prior, pi_s){
subset <- (prior != 1.0)
sum((prior-1)[subset]*log(pi_s[subset]))
}
#' @title compute log likelihood
#' @param L log likelihoods,
#' where the (i,k)th entry is the log probability of observation i
#' given it came from component k of g
#' @param p the vector of mixture proportions
#' @param prior the weight for the penalty
compute.log.lik <- function(lL, p, prior){
p = normalize(pmax(0,p))
temp = log(exp(lL$loglik_matrix) %*% p)+lL$lfactors
return(sum(temp) + penalty(prior, p))
# return(sum(temp))
}
normalize <- function(x){
x/sum(x)
}
mixture.MV.times <- function(X, Ulist, init_V = list(diag(ncol(X))), tol=1e-5, prior = c('nullbiased', 'uniform')){
times = length(init_V)
result = list()
loglik = c()
V = list()
time.t = c()
converge.status = c()
for(i in 1:times){
out.time = system.time(result[[i]] <- mixture.MV(X, Ulist,
init_V=init_V[[i]],
prior=prior,
tol = tol))
time.t = c(time.t, out.time['elapsed'])
loglik = c(loglik, tail(result[[i]]$loglik, 1))
V = c(V, list(result[[i]]$V))
}
if(abs(max(loglik) - min(loglik)) < 1e-4){
status = 'global'
}else{
status = 'local'
}
ind = which.max(loglik)
return(list(result=result[[ind]], status = status, loglik = loglik, V=V, time = time.t))
}
mixture.MV <- function(X, Ulist, init_V=diag(ncol(X)), tol=1e-5, prior = c('nullbiased', 'uniform')){
prior <- match.arg(prior)
m.model = fit_mash_V(X, Ulist, V = init_V, prior=prior)
pi_s = get_estimated_pi(m.model, dimension = 'all')
prior.v <- mashr:::set_prior(length(pi_s), prior)
# compute loglikelihood
log_liks <- c()
log_liks <- c(log_liks, get_loglik(m.model)+penalty(prior.v, pi_s))
delta.ll <- 1
niter <- 0
V = init_V
while(delta.ll > tol){
# max_V
V = E_V(X, m.model)
V = cov2cor(V)
m.model = fit_mash_V(X, Ulist, V, prior=prior)
pi_s = get_estimated_pi(m.model, dimension = 'all')
log_liks <- c(log_liks, get_loglik(m.model)+penalty(prior.v, pi_s))
# Update delta
delta.ll <- log_liks[length(log_liks)] - log_liks[length(log_liks)-1]
niter <- niter + 1
}
return(list(pi = normalize(pi_s), V=V, loglik = log_liks))
}
E_V = function(X, m.model){
n = nrow(X)
post.m = m.model$result$PosteriorMean
post.sec = plyr::laply(1:n, function(i) m.model$result$PosteriorCov[,,i] + tcrossprod(post.m[i,])) # nx2x2 array
temp1 = crossprod(X)
temp2 = crossprod(post.m, X) + crossprod(X, post.m)
temp3 = unname(plyr::aaply(post.sec, c(2,3), sum))
(temp1 - temp2 + temp3)/n
}
fit_mash_V <- function(X, Ulist, V, prior=c('nullbiased', 'uniform')){
m.data = mashr::mash_set_data(Bhat=X, Shat=1, V = V)
m.model = mashr::mash(m.data, Ulist, prior=prior, verbose = FALSE, outputlevel = 3)
return(m.model)
}
set.seed(1)
n = 4000; p = 2
Sigma = matrix(c(1,0.5,0.5,1),p,p)
U0 = matrix(0,2,2)
U1 = U0; U1[1,1] = 1
U2 = U0; U2[2,2] = 1
U3 = matrix(1,2,2)
Utrue = list(U0=U0, U1=U1, U2=U2, U3=U3)
data = generate_data(n, p, Sigma, Utrue)
m.data = mash_set_data(data$Bhat, data$Shat)
U.c = cov_canonical(m.data)
result.mV <- mixture.MV.times(m.data$Bhat, U.c)
The estimated \(V\) is 1, 0.5087773, 0.5087773, 1. The running time is 25.508 seconds.
m.data.mV = mash_set_data(data$Bhat, data$Shat, V = result.mV$result$V)
U.c.mV = cov_canonical(m.data.mV)
m.mV = mash(m.data.mV, U.c, verbose= FALSE)
null.ind = which(apply(data$B,1,sum) == 0)
The log likelihood is -12302.52. There are 26 significant samples, 0 false positives. The RRMSE is 0.5822283.
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] mashr_0.2-15 ashr_2.2-14
loaded via a namespace (and not attached):
[1] Rcpp_0.12.19 knitr_1.20 whisker_0.3-2
[4] magrittr_1.5 workflowr_1.1.1 REBayes_1.3
[7] MASS_7.3-50 pscl_1.5.2 doParallel_1.0.14
[10] SQUAREM_2017.10-1 lattice_0.20-35 foreach_1.4.4
[13] plyr_1.8.4 stringr_1.3.1 tools_3.5.1
[16] parallel_3.5.1 grid_3.5.1 R.oo_1.22.0
[19] rmeta_3.0 git2r_0.23.0 htmltools_0.3.6
[22] iterators_1.0.10 assertthat_0.2.0 abind_1.4-5
[25] yaml_2.2.0 rprojroot_1.3-2 digest_0.6.15
[28] Matrix_1.2-14 codetools_0.2-15 R.utils_2.6.0
[31] evaluate_0.11 rmarkdown_1.10 stringi_1.2.4
[34] compiler_3.5.1 Rmosek_8.0.69 backports_1.1.2
[37] R.methodsS3_1.7.1 mvtnorm_1.0-8 truncnorm_1.0-8
This reproducible R Markdown analysis was created with workflowr 1.1.1