Last updated: 2022-02-10
Checks: 7 0
Knit directory: MelanomaIMC/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200728)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version a2860df. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rproj.user/
Ignored: Table_S4.csv
Ignored: analysis/.DS_Store
Ignored: analysis/._.DS_Store
Ignored: code/.DS_Store
Ignored: code/._.DS_Store
Ignored: data/.DS_Store
Ignored: data/._.DS_Store
Ignored: data/data_for_analysis/
Ignored: data/full_data/
Unstaged changes:
Modified: analysis/Figure_5.rmd
Modified: analysis/Supp-Figure_12.rmd
Modified: analysis/Supp-Figure_13.rmd
Modified: analysis/Supp-Figure_5.rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/11_Bcell_Patch_Detection.Rmd
) and HTML (docs/11_Bcell_Patch_Detection.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | d6a945a | toobiwankenobi | 2021-12-06 | updated figures |
Rmd | 3da15db | toobiwankenobi | 2021-11-24 | changes for revision |
This script detects interaction networks of a given celltype (here: B cells) and defines these networks as clusters. Once a cluster is defined, an algorithm screens the neighbourhood of those clusters to identify cells within/surrounding a cluster. These cells are defined as the community of a cluster.
sapply(list.files("code/helper_functions", full.names = TRUE), source)
code/helper_functions/calculateSummary.R
value ?
visible FALSE
code/helper_functions/censor_dat.R
value ?
visible FALSE
code/helper_functions/detect_mRNA_expression.R
value ?
visible FALSE
code/helper_functions/DistanceToClusterCenter.R
value ?
visible FALSE
code/helper_functions/findMilieu.R code/helper_functions/findPatch.R
value ? ?
visible FALSE FALSE
code/helper_functions/getInfoFromString.R
value ?
visible FALSE
code/helper_functions/getSpotnumber.R
value ?
visible FALSE
code/helper_functions/plotCellCounts.R
value ?
visible FALSE
code/helper_functions/plotCellFractions.R
value ?
visible FALSE
code/helper_functions/plotDist.R code/helper_functions/read_Data.R
value ? ?
visible FALSE FALSE
code/helper_functions/scatter_function.R
value ?
visible FALSE
code/helper_functions/sceChecks.R
value ?
visible FALSE
code/helper_functions/validityChecks.R
value ?
visible FALSE
library(SingleCellExperiment)
library(ggplot2)
library(scater)
library(viridis)
library(igraph)
library(CATALYST)
library(reshape2)
library(cowplot)
library(ggridges)
library(tidyverse)
library(viridis)
library(dplyr)
library(cytomapper)
library(concaveman)
library(data.table)
library(sf)
library(ggbeeswarm)
library(RANN)
sce_prot = readRDS(file = "data/data_for_analysis/sce_protein.rds")
sce_rna = readRDS(file = "data/data_for_analysis/sce_RNA.rds")
A B cell cluster is defined by at least 20 adjacent B cells (Bcell and BnTcell, max distance of 15µm between them). A milieu is defined by all cells within a cluster and the proximity (enlarging distance = 15µm)
sce_prot$bcell_patch <- NULL
sce_prot$bcell_milieu <- NULL
sce_prot$bcell_patch_score <- NULL
start = Sys.time()
# quantiles of cell radius
quantile(sqrt(sce_prot[,sce_prot$celltype %in% c("B cell")]$Area/pi))
0% 25% 50% 75% 100%
1.128379 2.820948 3.385138 3.908820 9.097284
# find B cell clusters
sce_prot <- findPatch(sce_prot, sce_prot[,colData(sce_prot)$celltype %in% c("B cell", "BnT cell")]$cellID,
'cellID', 'Center_X', 'Center_Y', 'ImageNumber',
distance = 15, min_clust_size = 10, output_colname = "bcell_patch")
Time difference of 10.30734 mins
[1] "patches successfully added to sce object"
# number of B cell clusters
length(unique(sce_prot$bcell_patch))
[1] 375
# define cells within/surrounding a cluster of B cells
sce_prot <- findMilieu(sce_prot,
'cellID', 'Center_X', 'Center_Y', 'ImageNumber', 'bcell_patch',
distance = 30, output_colname = "bcell_milieu")
Time difference of 2.779587 mins
[1] "milieus successfully added to sce object"
# number of chemokine communities
length(unique(sce_prot$bcell_milieu))
[1] 375
end = Sys.time()
print(end-start)
Time difference of 13.098 mins
example <- findPatch(sce_prot[,sce_prot$Description %in% c("D4")], sce_prot[,sce_prot$celltype %in% c("B cell", "BnT cell")]$cellID,
'cellID',
'Center_X', 'Center_Y',
'ImageNumber',
distance = 15,
min_clust_size = 10,
output_colname = "example_patch")
Time difference of 0.4352202 secs
[1] "patches successfully added to sce object"
example <- findMilieu(example,
'cellID',
'Center_X', 'Center_Y',
'ImageNumber',
'example_patch',
distance = 30,
output_colname = "example_milieu",
plot = TRUE)
Time difference of 1.118382 secs
[1] "milieus successfully added to sce object"
saveRDS(sce_prot, file = "data/data_for_analysis/sce_protein.rds")
saveRDS(sce_rna, file = "data/data_for_analysis/sce_RNA.rds")
sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.3 LTS
Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.8.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] RANN_2.6.1 ggbeeswarm_0.6.0
[3] sf_1.0-5 data.table_1.14.2
[5] concaveman_1.1.0 cytomapper_1.6.0
[7] EBImage_4.36.0 forcats_0.5.1
[9] stringr_1.4.0 purrr_0.3.4
[11] readr_2.1.2 tidyr_1.2.0
[13] tibble_3.1.6 tidyverse_1.3.1
[15] ggridges_0.5.3 cowplot_1.1.1
[17] reshape2_1.4.4 CATALYST_1.18.1
[19] igraph_1.2.11 viridis_0.6.2
[21] viridisLite_0.4.0 scater_1.22.0
[23] scuttle_1.4.0 ggplot2_3.3.5
[25] SingleCellExperiment_1.16.0 SummarizedExperiment_1.24.0
[27] Biobase_2.54.0 GenomicRanges_1.46.1
[29] GenomeInfoDb_1.30.1 IRanges_2.28.0
[31] S4Vectors_0.32.3 BiocGenerics_0.40.0
[33] MatrixGenerics_1.6.0 matrixStats_0.61.0
[35] dplyr_1.0.7 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] scattermore_0.7 flowWorkspace_4.6.0
[3] knitr_1.37 irlba_2.3.5
[5] multcomp_1.4-18 DelayedArray_0.20.0
[7] RCurl_1.98-1.5 doParallel_1.0.16
[9] generics_0.1.2 flowCore_2.6.0
[11] ScaledMatrix_1.2.0 terra_1.5-17
[13] callr_3.7.0 TH.data_1.1-0
[15] proxy_0.4-26 ggpointdensity_0.1.0
[17] tzdb_0.2.0 xml2_1.3.3
[19] lubridate_1.8.0 httpuv_1.6.5
[21] assertthat_0.2.1 xfun_0.29
[23] hms_1.1.1 jquerylib_0.1.4
[25] evaluate_0.14 promises_1.2.0.1
[27] fansi_1.0.2 dbplyr_2.1.1
[29] readxl_1.3.1 Rgraphviz_2.38.0
[31] DBI_1.1.2 htmlwidgets_1.5.4
[33] ellipsis_0.3.2 ggcyto_1.22.0
[35] ggnewscale_0.4.5 ggpubr_0.4.0
[37] backports_1.4.1 V8_4.0.0
[39] cytolib_2.6.1 svgPanZoom_0.3.4
[41] RcppParallel_5.1.5 sparseMatrixStats_1.6.0
[43] vctrs_0.3.8 abind_1.4-5
[45] withr_2.4.3 ggforce_0.3.3
[47] aws.signature_0.6.0 svglite_2.0.0
[49] cluster_2.1.2 crayon_1.4.2
[51] drc_3.0-1 units_0.7-2
[53] pkgconfig_2.0.3 tweenr_1.0.2
[55] vipor_0.4.5 rlang_1.0.0
[57] lifecycle_1.0.1 sandwich_3.0-1
[59] modelr_0.1.8 rsvd_1.0.5
[61] cellranger_1.1.0 rprojroot_2.0.2
[63] polyclip_1.10-0 graph_1.72.0
[65] tiff_0.1-11 Matrix_1.4-0
[67] raster_3.5-15 carData_3.0-5
[69] Rhdf5lib_1.16.0 zoo_1.8-9
[71] reprex_2.0.1 base64enc_0.1-3
[73] beeswarm_0.4.0 whisker_0.4
[75] GlobalOptions_0.1.2 processx_3.5.2
[77] pheatmap_1.0.12 png_0.1-7
[79] rjson_0.2.21 bitops_1.0-7
[81] shinydashboard_0.7.2 getPass_0.2-2
[83] KernSmooth_2.23-20 rhdf5filters_1.6.0
[85] ConsensusClusterPlus_1.58.0 DelayedMatrixStats_1.16.0
[87] classInt_0.4-3 shape_1.4.6
[89] jpeg_0.1-9 rstatix_0.7.0
[91] ggsignif_0.6.3 aws.s3_0.3.21
[93] beachmat_2.10.0 scales_1.1.1
[95] magrittr_2.0.2 plyr_1.8.6
[97] hexbin_1.28.2 zlibbioc_1.40.0
[99] compiler_4.1.2 RColorBrewer_1.1-2
[101] plotrix_3.8-2 clue_0.3-60
[103] cli_3.1.1 XVector_0.34.0
[105] ncdfFlow_2.40.0 ps_1.6.0
[107] FlowSOM_2.2.0 MASS_7.3-55
[109] tidyselect_1.1.1 stringi_1.7.6
[111] RProtoBufLib_2.6.0 highr_0.9
[113] yaml_2.2.2 BiocSingular_1.10.0
[115] locfit_1.5-9.4 latticeExtra_0.6-29
[117] ggrepel_0.9.1 grid_4.1.2
[119] sass_0.4.0 tools_4.1.2
[121] parallel_4.1.2 CytoML_2.6.0
[123] circlize_0.4.13 rstudioapi_0.13
[125] foreach_1.5.2 git2r_0.29.0
[127] gridExtra_2.3 farver_2.1.0
[129] Rtsne_0.15 digest_0.6.29
[131] shiny_1.7.1 Rcpp_1.0.8
[133] car_3.0-12 broom_0.7.12
[135] later_1.3.0 httr_1.4.2
[137] ComplexHeatmap_2.10.0 colorspace_2.0-2
[139] rvest_1.0.2 XML_3.99-0.8
[141] fs_1.5.2 splines_4.1.2
[143] RBGL_1.70.0 sp_1.4-6
[145] systemfonts_1.0.3 xtable_1.8-4
[147] jsonlite_1.7.3 R6_2.5.1
[149] pillar_1.7.0 htmltools_0.5.2
[151] mime_0.12 nnls_1.4
[153] glue_1.6.1 fastmap_1.1.0
[155] BiocParallel_1.28.3 BiocNeighbors_1.12.0
[157] fftwtools_0.9-11 class_7.3-20
[159] codetools_0.2-18 mvtnorm_1.1-3
[161] utf8_1.2.2 lattice_0.20-45
[163] bslib_0.3.1 curl_4.3.2
[165] colorRamps_2.3 gtools_3.9.2
[167] survival_3.2-13 rmarkdown_2.11
[169] munsell_0.5.0 e1071_1.7-9
[171] rhdf5_2.38.0 GetoptLong_1.0.5
[173] GenomeInfoDbData_1.2.7 iterators_1.0.13
[175] HDF5Array_1.22.1 haven_2.4.3
[177] gtable_0.3.0