Last updated: 2021-02-19
Checks: 6 1
Knit directory: melanoma_publication_old_data/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200728)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version ee1595d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rproj.user/
Ignored: ._.DS_Store
Ignored: analysis/._clinical metadata preparation.Rmd
Ignored: code/.DS_Store
Ignored: code/._.DS_Store
Ignored: data/.DS_Store
Ignored: data/._.DS_Store
Ignored: data/data_for_analysis/
Ignored: data/full_data/
Ignored: output/.DS_Store
Ignored: output/._.DS_Store
Ignored: output/._protein_neutrophil.png
Ignored: output/._rna_neutrophil.png
Ignored: output/PSOCKclusterOut/
Ignored: output/bcell_grouping.png
Ignored: output/dysfunction_correlation.pdf
Unstaged changes:
Modified: .gitignore
Modified: analysis/04_1_Protein_celltype_classification.rmd
Modified: analysis/04_1_RNA_celltype_classification.rmd
Modified: analysis/04_2_RNA_classification_subclustering.rmd
Modified: analysis/04_2_protein_classification_subclustering.rmd
Modified: analysis/07_TCF7_PD1_gating.rmd
Modified: analysis/08_color_vectors.rmd
Modified: analysis/09_Tcell_Score.Rmd
Modified: analysis/10_Dysfunction_Score.rmd
Modified: analysis/11_Bcell_Score.Rmd
Modified: analysis/Figure_1.rmd
Modified: analysis/Figure_2.rmd
Modified: analysis/Figure_3.rmd
Modified: analysis/Figure_4.rmd
Modified: analysis/Figure_5.rmd
Modified: analysis/Supp-Figure_1.rmd
Modified: analysis/Supp-Figure_2.rmd
Modified: analysis/Supp-Figure_3.rmd
Modified: analysis/Supp-Figure_4.rmd
Modified: analysis/Supp-Figure_5.rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Figure_5.rmd
) and HTML (docs/Figure_5.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | ee1595d | toobiwankenobi | 2021-02-12 | clean repo and adapt files |
html | ee1595d | toobiwankenobi | 2021-02-12 | clean repo and adapt files |
html | 3f5af3f | toobiwankenobi | 2021-02-09 | add .html files |
Rmd | afa7957 | toobiwankenobi | 2021-02-08 | minor changes on figures and figure order |
Rmd | 20a1458 | toobiwankenobi | 2021-02-04 | adapt figure order |
Rmd | f9bb33a | toobiwankenobi | 2021-02-04 | new Figure 5 and minor changes in figure order |
Rmd | c3e8a47 | toobiwankenobi | 2020-10-12 | clean branch |
Rmd | 2c11d5c | toobiwankenobi | 2020-08-05 | add new scripts |
This script generates plots for Figure 5.
knitr::opts_chunk$set(echo = TRUE, message= FALSE)
knitr::opts_knit$set(root.dir = rprojroot::find_rstudio_root_file())
First, we will load the libraries needed for this part of the analysis.
sapply(list.files("code/helper_functions", full.names = TRUE), source)
code/helper_functions/calculateSummary.R
value ?
visible FALSE
code/helper_functions/censor_dat.R
value ?
visible FALSE
code/helper_functions/detect_mRNA_expression.R
value ?
visible FALSE
code/helper_functions/DistanceToClusterCenter.R
value ?
visible FALSE
code/helper_functions/findMilieu.R code/helper_functions/findPatch.R
value ? ?
visible FALSE FALSE
code/helper_functions/getInfoFromString.R
value ?
visible FALSE
code/helper_functions/getSpotnumber.R
value ?
visible FALSE
code/helper_functions/plotCellCounts.R
value ?
visible FALSE
code/helper_functions/plotCellFractions.R
value ?
visible FALSE
code/helper_functions/plotDist.R
value ?
visible FALSE
code/helper_functions/scatter_function.R
value ?
visible FALSE
code/helper_functions/sceChecks.R
value ?
visible FALSE
code/helper_functions/validityChecks.R
value ?
visible FALSE
library(SingleCellExperiment)
library(reshape2)
library(tidyverse)
library(dplyr)
library(data.table)
library(ggplot2)
library(cba)
library(ComplexHeatmap)
library(colorRamps)
library(circlize)
library(RColorBrewer)
library(ggpubr)
library(ggbeeswarm)
library(gridExtra)
library(tidyr)
library(ggpmisc)
library(circlize)
library(coxme)
library(dittoSeq)
library(scater)
library(cowplot)
library(survminer)
library(ggalluvial)
library(cytomapper)
library(corrplot)
library(ggridges)
library(rstatix)
library(sf)
library(concaveman)
library(RANN)
sce_rna = readRDS(file = "data/data_for_analysis/sce_RNA.rds")
sce_prot = readRDS(file = "data/data_for_analysis/sce_protein.rds")
# meta data
dat_relation = fread(file = "data/data_for_analysis/protein/Object relationships.csv",stringsAsFactors = FALSE)
dat_relation_rna = fread(file = "data/data_for_analysis/RNA/Object relationships.csv",stringsAsFactors = FALSE)
# image
image_mat_rna <- read.csv("data/data_for_analysis/rna/Image.csv")
# surv_dat
dat_survival_prot <- fread(file = "data/data_for_analysis/protein/clinical_data_protein.csv")
# prepare data and add cellID
dat_relation$cellID_first <- paste("protein", paste(dat_relation$`First Image Number`, dat_relation$`First Object Number`, sep = "_"), sep = "_")
dat_relation$cellID_second <- paste("protein", paste(dat_relation$`Second Image Number`, dat_relation$`Second Object Number`, sep = "_"), sep = "_")
# add celltype status to first and second label
celltype_first <- data.frame(colData(sce_prot))[,c("cellID", "celltype", "celltype_clustered")]
colnames(celltype_first) <- c("cellID_first", "celltype_first", "celltype_clust_first")
celltype_second <- data.frame(colData(sce_prot))[,c("cellID", "celltype", "celltype_clustered")]
colnames(celltype_second) <- c("cellID_second", "celltype_second", "celltype_clust_second")
dat_relation <- left_join(dat_relation, celltype_first, by = "cellID_first")
dat_relation <- left_join(dat_relation, celltype_second, by = "cellID_second")
colnames(dat_relation)[5] <- "FirstImageNumber"
# prepare data and add cellID
dat_relation_rna$cellID_first <- paste("RNA", paste(dat_relation_rna$`First Image Number`, dat_relation_rna$`First Object Number`, sep = "_"), sep = "_")
dat_relation_rna$cellID_second <- paste("RNA", paste(dat_relation_rna$`Second Image Number`, dat_relation_rna$`Second Object Number`, sep = "_"), sep = "_")
# add celltype status to first and second label
celltype_first <- data.frame(colData(sce_rna))[,c("cellID", "celltype_rf", "celltype_clustered")]
colnames(celltype_first) <- c("cellID_first", "celltype_first", "celltype_clust_first")
celltype_second <- data.frame(colData(sce_rna))[,c("cellID", "celltype_rf", "celltype_clustered")]
colnames(celltype_second) <- c("cellID_second", "celltype_second", "celltype_clust_second")
dat_relation_rna <- left_join(dat_relation_rna, celltype_first, by = "cellID_first")
dat_relation_rna <- left_join(dat_relation_rna, celltype_second, by = "cellID_second")
colnames(dat_relation_rna)[5] <- "FirstImageNumber"
# subset sce for inflamed/exhausted in high samples
sce_protein_sub <- sce_prot[, sce_prot$dysfunction_density %in% c("high - high dysfunction", "high - low dysfunction")]
# sample 9 images each
images <- data.frame(colData(sce_protein_sub)) %>%
distinct(ImageNumber, .keep_all = T) %>%
group_by(dysfunction_density) %>%
#filter(ImageNumber %in% sample(ImageNumber, 9)) %>%
select(ImageNumber, dysfunction_density)
return <- list()
for (i in c("high - high dysfunction", "high - low dysfunction")){
# title name
title_name <- i
# count interactions in 20 sample images
cur_dat_relation <- data.frame(dat_relation) %>%
filter(FirstImageNumber %in% images[images$dysfunction_density == i,]$ImageNumber) %>%
select("celltype_first" ,"celltype_second") %>%
dplyr::count(celltype_first,celltype_second) %>%
data.frame()
# remove tumor-tumor interactions
cur_dat_relation <- cur_dat_relation[cur_dat_relation$celltype_first != "Tumor",]
cur_dat_relation <- cur_dat_relation[cur_dat_relation$celltype_first != "unknown",]
cur_dat_relation <- cur_dat_relation[cur_dat_relation$celltype_second != "unknown",]
# count interactions
cur_dat_relation_subcluster <- data.frame(dat_relation) %>%
filter(FirstImageNumber %in% images[images$dysfunction_density == i,]$ImageNumber) %>%
select("celltype_first" , "celltype_clust_second") %>%
dplyr::count(celltype_first, celltype_clust_second) %>%
data.frame()
# remove tumor-tumor interactions
cur_dat_relation_subcluster <- cur_dat_relation_subcluster[cur_dat_relation_subcluster$celltype_first == "CD8+ T cell",]
cur_dat_relation_subcluster <- cur_dat_relation_subcluster[cur_dat_relation_subcluster$celltype_clust_second %in%
unique(sce_prot[,sce_prot$celltype == "Tumor"]$celltype_clustered),]
# return subcluster adj df
return[[i]] <- cur_dat_relation_subcluster
# make coord diagram
chordDiagramFromDataFrame(cur_dat_relation,
grid.col = metadata(sce_prot)$colour_vectors$celltype,
reduce = 0.05,
transparency = ifelse(cur_dat_relation[[1]] %in% c("CD8+ T cell"),0,0.6),
annotationTrack = c("grid"))
# add percentages
circos.track(track.index = 1, panel.fun = function(x, y) {
xlim = get.cell.meta.data("xlim")
ylim = get.cell.meta.data("ylim")
sector.name = get.cell.meta.data("sector.index")
xplot = get.cell.meta.data("xplot")
circos.lines(xlim, c(mean(ylim), mean(ylim)), lty = 3) # dotted line
by = ifelse(abs(xplot[2] - xplot[1]) > 30, 0.2, 0.5)
for(p in seq(by, 1, by = by)) {
circos.text(p*(xlim[2] - xlim[1]) + xlim[1], mean(ylim) + 0.1,
paste0(p*100, "%"), cex = 0.5, adj = c(0.5, 0), niceFacing = TRUE)
}
}, bg.border = NA)
}
# create legend for tumor subclusters
#lgd1 = Legend(labels = names(col_vec[grep("Tumor", names(col_vec))]), title = "Tumor\nSubclusters", legend_gp = gpar(fill = unname(col_vec[grep("Tumor", names(col_vec))])))
lgd2 = Legend(labels = names(metadata(sce_prot)$colour_vector$celltype), title = "Cell Type", legend_gp = gpar(fill = unname(metadata(sce_prot)$colour_vector$celltype)))
draw(packLegend(lgd2,
#lgd1,
gap = unit(2, "cm")))
celltypes <- data.frame(colData(sce_prot)) %>%
filter(celltype != "Tumor") %>%
group_by(ImageNumber, bcell_patch_score, dysfunction_score, celltype) %>%
summarise(n=n()) %>%
mutate(fraction = n/sum(n)) %>%
filter(is.na(dysfunction_score) == FALSE)
celltypes$bcell_patch_score <- as.character(celltypes$bcell_patch_score)
celltypes$bcell_patch_score <- factor(celltypes$bcell_patch_score, levels = c("no B cells", "no B cell patches", "small B cell patches", "TLS"))
stat.test <- celltypes %>%
group_by(celltype) %>%
wilcox_test(data = ., fraction ~ dysfunction_score) %>%
adjust_pvalue(method = "BH") %>%
add_significance("p.adj",cutpoints = c(0, 1e-04, 0.001, 0.01, 0.1, 1)) %>%
add_x_position(x = "dysfunction_score", dodge = 0.8)
ggplot(celltypes, aes(x=celltype, y=fraction)) +
geom_boxplot(alpha=.5, lwd = 1, outlier.shape = NA, aes(fill=dysfunction_score)) +
geom_quasirandom(dodge.width=0.75, alpha=1, size=1, aes(group=dysfunction_score)) +
stat_pvalue_manual(stat.test, x = "celltype", label = "p.adj.signif", size = 7, y.position = -0.05) +
theme_bw() +
theme(text = element_text(size = 16),
axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) +
guides(fill=guide_legend(title="Dysfunction Score", override.aes = c(lwd=0.5, alpha=1)), col=guide_legend(title="B cell Score")) +
xlab("") +
ylab("Cell Type Fractions") +
scale_color_manual(values = c("black", "lightblue", "darkblue", "red", "red4"),
labels = c(" ", "no Bcells", "few Bcells", "small patches", "large patches"),
guide = TRUE)
# check images above median in low dysfunction group for B cells (all have large patches)
celltypes %>%
filter(dysfunction_score == "low dysfunction") %>%
filter(celltype == "B cell") %>%
group_by(dysfunction_score) %>%
mutate(median_frac = median(fraction)) %>%
filter(fraction > median_frac)
# A tibble: 7 x 7
# Groups: dysfunction_score [1]
ImageNumber bcell_patch_sco… dysfunction_sco… celltype n fraction
<int> <fct> <chr> <chr> <int> <dbl>
1 29 TLS low dysfunction B cell 883 0.134
2 33 TLS low dysfunction B cell 4829 0.365
3 86 TLS low dysfunction B cell 2416 0.253
4 95 TLS low dysfunction B cell 1602 0.116
5 109 TLS low dysfunction B cell 1337 0.255
6 114 TLS low dysfunction B cell 2895 0.362
7 118 TLS low dysfunction B cell 782 0.204
# … with 1 more variable: median_frac <dbl>
c <- data.frame(colData(sce_rna)) %>%
distinct(Description, .keep_all = T) %>%
filter(dysfunction_score %in% c("low dysfunction", "high dysfunction")) %>%
dplyr::count(MM_location, Location, dysfunction_score) %>%
ggplot(aes(axis1 = MM_location, axis2 = Location, axis3 = dysfunction_score,y=n))+
geom_alluvium(aes(fill=as.factor(dysfunction_score)))+
geom_stratum()+
geom_text(stat = "stratum", aes(label = after_stat(stratum))) +
theme_minimal()+
scale_x_discrete(limits = c("Met Location", "Punch Location", "Dysfunction Score"), expand = c(.2, .05)) +
theme(text = element_text(size=20)) +
guides(fill=guide_legend(title="Dysfunction Score")) +
ylab("Number of Samples")
plot(c)
a <- data.frame(colData(sce_rna)) %>%
distinct(Description, .keep_all = T) %>%
group_by(bcell_patch_score, dysfunction_score) %>%
summarise(n=n()) %>%
filter(is.na(dysfunction_score) == F) %>%
group_by(dysfunction_score) %>%
mutate(fraction = n / sum(n)) %>%
ungroup()
ggplot(a) +
geom_col(aes(y=dysfunction_score, x=fraction, fill=bcell_patch_score)) +
theme_minimal() +
theme(text = element_text(size = 22)) +
xlab("Fraction of Samples") +
ylab("") +
guides(fill=guide_legend(title="B cell Score"))
# im_size
im_size <- as.data.frame(cbind(image_mat_rna$Metadata_Description, (image_mat_rna$Height_cellmask * image_mat_rna$Width_cellmask)/1000000))
names(im_size) <- c("Description", "mm2")
im_size$mm2 <- as.numeric(im_size$mm2)
cxcl13 <- data.frame(colData(sce_rna)) %>%
mutate(mmLocationPunch = paste(MM_location, Location, sep = "_")) %>%
filter(mmLocationPunch != "LN_M") %>% # remove LN margin samples
filter(CXCL13 == 1) %>%
group_by(Description, MM_location, celltype) %>%
summarise(n=n()) %>%
reshape2::dcast(Description + MM_location ~ celltype, value.var = "n", fill = 0)
all_images <- data.frame(colData(sce_rna)) %>%
mutate(mmLocationPunch = paste(MM_location, Location, sep = "_")) %>%
filter(mmLocationPunch != "LN_M") %>%
distinct(Description, .keep_all = T) %>%
select(Description)
# left_join to have all images
all_images <- left_join(all_images, cxcl13)
# replace NA
all_images[is.na(all_images)] <- 0
all_images <- all_images %>%
reshape2::melt(id.vars=c("Description", "MM_location"), variable.name = "celltype", value.name = "n")
# add mm2 and calculate density
all_images <- left_join(all_images, im_size)
all_images$density <- all_images$n / all_images$mm2
#
Bcell <- data.frame(colData(sce_rna)) %>%
distinct(Description, .keep_all = T) %>%
group_by(Description) %>%
select(Description, bcell_patch_score)
# add grouping
all_images <- left_join(all_images, Bcell[,c("Description","bcell_patch_score")]) %>%
filter(celltype %in% c("CD8+ T cell", "CD8- T cell", "HLA-DR"))
#all_images$interaction <- interaction(all_images$celltype, all_images$bcell_patch_score)
ggplot(all_images,aes(x=bcell_patch_score, y = log10(as.numeric(density+1)), fill=celltype)) +
geom_boxplot(alpha=1, lwd=1, outlier.shape = NA) +
geom_quasirandom(dodge.width=0.75, alpha=1, size=2) +
ylab("CXCL13 Expressing Cells per mm2\n(log10 + 1)") +
xlab("") +
theme_bw() +
theme(text = element_text(size=18),
axis.text.x = element_text(angle=45, vjust=1, hjust=1)) +
scale_fill_manual(values = unname(metadata(sce_rna)$colour_vectors$celltype[c("CD8+ T cell", "CD8- T cell", "HLA-DR")]),
breaks = names(metadata(sce_rna)$colour_vectors$celltype[c("CD8+ T cell", "CD8- T cell", "HLA-DR")])) +
guides(fill=guide_legend(title="Cell Type", override.aes = c(lwd=0.5)))
example <- findPatch(sce_prot[,sce_prot$Description == "C9"], sce_prot[,colData(sce_prot)$celltype %in% c("B cell", "BnT cell")]$cellID,
'cellID',
'Center_X', 'Center_Y',
'Description',
distance = 15,
min_clust_size = 20,
output_colname = "example_patch")
Time difference of 2.187578 secs
[1] "patches successfully added to sce object"
example <- findMilieu(example,
'cellID',
'Center_X', 'Center_Y',
'Description',
'example_patch',
distance = 50,
output_colname = "example_milieu",
plot = TRUE)
Time difference of 3.264488 secs
[1] "milieus successfully added to sce object"
celltypes <- data.frame(colData(sce_prot)) %>%
mutate(mmLocationPunch = paste(MM_location, Location, sep = "_")) %>%
filter(mmLocationPunch != "LN_M") %>% # remove LN margin images
#filter(celltype != "Tumor") %>%
mutate(TCF7_PD1 = paste(PD1, TCF7, sep = "_")) %>%
group_by(PatientID,BlockID, Description, bcell_patch_score, celltype, TCF7_PD1) %>%
summarise(n=n()) %>%
reshape2::dcast(PatientID + BlockID + Description + bcell_patch_score + celltype ~ TCF7_PD1, value.var = "n", fill=0) %>%
reshape2::melt(id.vars = c("PatientID","BlockID", "Description", "bcell_patch_score", "celltype"),
variable.name = "TCF7_PD1", value.name = "n") %>%
group_by(Description, celltype) %>%
mutate(fraction = n/sum(n)) %>%
mutate(total_cells = sum(n)) %>%
ungroup() %>%
filter(celltype %in% c("CD8+ T cell", "CD4+ T cell"))
celltypes$bcell_patch_score <- as.character(celltypes$bcell_patch_score)
celltypes$bcell_patch_score <- factor(celltypes$bcell_patch_score, levels = c("no B cells", "no B cell patches", "small B cell patches", "TLS"))
stat.test <- celltypes %>%
group_by(celltype, TCF7_PD1) %>%
kruskal_test(data = ., fraction ~ bcell_patch_score) %>%
adjust_pvalue(method = "BH") %>%
add_significance("p.adj",cutpoints = c(0, 1e-04, 0.001, 0.01, 0.1, 1)) %>%
mutate(group1 = celltype, group2 = TCF7_PD1) %>%
add_xy_position()
ggplot(celltypes, aes(x=TCF7_PD1, y=fraction)) +
geom_boxplot(alpha=1, lwd = 0.5, outlier.size = 0.5, aes(fill=bcell_patch_score)) +
stat_pvalue_manual(x = "group2", stat.test, y.position = -0.1, size = 6) +
theme_bw() +
theme(text = element_text(size = 14),
axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) +
guides(fill=guide_legend(title="B cell Score", override.aes = c(lwd=0.5))) +
xlab("") +
ylab("Fraction of Population") +
facet_wrap(~celltype, scales = "free") +
ylim(-0.1,1.1)
# magnify PD1+TCF7+ population
ggplot(celltypes[celltypes$TCF7_PD1 == "PD1+_TCF7+",], aes(x=TCF7_PD1, y=fraction)) +
geom_boxplot(alpha=1, lwd = 0.5, outlier.size = 0.5, aes(fill=bcell_patch_score)) +
theme_bw() +
theme(text = element_text(size = 14),
axis.text.x = element_blank(),
legend.position = "none") +
xlab("") +
ylab("") +
facet_wrap(~celltype, scales = "free") +
coord_cartesian(ylim = c(0,0.05))
# what fraction of each celltype is part of a milieu?
cur_dat <- data.frame(colData(sce_prot)) %>%
filter(Location != "CTRL") %>%
filter(celltype %in% c("CD8+ T cell", "CD4+ T cell")) %>%
mutate(status = paste(TCF7, PD1, sep = "_")) %>%
#filter(status == "TCF7+_PD1+") %>%
mutate(milieu_binary = ifelse(bcell_milieu > 0, 1, 0)) %>%
group_by(Description, milieu_binary, celltype, status) %>%
summarise(n=n()) %>%
group_by(Description, celltype, status) %>%
mutate(fraction_in_milieu = n / sum(n)) %>%
filter(milieu_binary == 1)
# what fraction of the total cell area is made up by cells that are part of a milieu
milieu_area <- data.frame(colData(sce_prot)) %>%
filter(Location != "CTRL") %>%
mutate(milieu_binary = ifelse(bcell_milieu > 0, 1, 0)) %>%
group_by(Description, milieu_binary) %>%
summarise(area = sum(Area)) %>%
group_by(Description) %>%
mutate(fraction_of_area = area / sum(area)) %>%
filter(row_number() == n())
sum <- left_join(cur_dat, milieu_area, by="Description")
# calculate metric - milieu_fraction divided by milieu-area-fraction (this normalizes the first metric)
sum$metric <- sum$fraction_in_milieu / sum$fraction_of_area
# one-sample t test
stat.test <- sum %>%
group_by(celltype, status) %>%
mutate(log10_metric = log10(metric)) %>%
t_test(log10_metric ~ 1, mu = 0, alternative = "greater", detailed = TRUE) %>%
adjust_pvalue() %>%
add_significance("p.adj",cutpoints = c(0, 1e-04, 0.001, 0.01, 0.1, 1))
ggplot(sum, aes(x=sum$status, y=log10(metric))) +
geom_boxplot(outlier.shape = NA) +
geom_quasirandom(size=0.75) +
geom_hline(yintercept = 0) +
facet_wrap(~celltype) +
theme_bw() +
theme(text=element_text(size=14),
axis.text.x = element_text(angle=45, vjust=1, hjust=1)) +
stat_pvalue_manual(
stat.test, x = "status", y.position = 1.5,
label = "p.adj.signif",
position = position_dodge(0.8),
size=6) +
ylab("Area-Normalized Log10 FC") +
xlab("") #+
#coord_cartesian(ylim=c(-1,1.75))
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04 LTS
Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.8.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=C
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] grid parallel stats4 stats graphics grDevices utils
[8] datasets methods base
other attached packages:
[1] RANN_2.6.1 concaveman_1.1.0
[3] sf_0.9-7 rstatix_0.6.0
[5] ggridges_0.5.3 corrplot_0.84
[7] cytomapper_1.3.1 EBImage_4.32.0
[9] ggalluvial_0.12.3 survminer_0.4.8
[11] cowplot_1.1.1 scater_1.16.2
[13] dittoSeq_1.0.2 coxme_2.2-16
[15] bdsmatrix_1.3-4 survival_3.2-7
[17] ggpmisc_0.3.7 gridExtra_2.3
[19] ggbeeswarm_0.6.0 ggpubr_0.4.0
[21] RColorBrewer_1.1-2 circlize_0.4.12
[23] colorRamps_2.3 ComplexHeatmap_2.4.3
[25] cba_0.2-21 proxy_0.4-24
[27] data.table_1.13.6 forcats_0.5.0
[29] stringr_1.4.0 dplyr_1.0.2
[31] purrr_0.3.4 readr_1.4.0
[33] tidyr_1.1.2 tibble_3.0.4
[35] ggplot2_3.3.3 tidyverse_1.3.0
[37] reshape2_1.4.4 SingleCellExperiment_1.12.0
[39] SummarizedExperiment_1.20.0 Biobase_2.50.0
[41] GenomicRanges_1.42.0 GenomeInfoDb_1.26.2
[43] IRanges_2.24.1 S4Vectors_0.28.1
[45] BiocGenerics_0.36.0 MatrixGenerics_1.2.0
[47] matrixStats_0.57.0 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] utf8_1.1.4 shinydashboard_0.7.1
[3] tidyselect_1.1.0 htmlwidgets_1.5.3
[5] BiocParallel_1.22.0 munsell_0.5.0
[7] units_0.6-7 codetools_0.2-18
[9] withr_2.3.0 colorspace_2.0-0
[11] knitr_1.30 rstudioapi_0.13
[13] ggsignif_0.6.0 labeling_0.4.2
[15] git2r_0.28.0 GenomeInfoDbData_1.2.4
[17] KMsurv_0.1-5 farver_2.0.3
[19] pheatmap_1.0.12 rprojroot_2.0.2
[21] vctrs_0.3.6 generics_0.1.0
[23] xfun_0.20 R6_2.5.0
[25] clue_0.3-58 rsvd_1.0.3
[27] locfit_1.5-9.4 bitops_1.0-6
[29] DelayedArray_0.16.0 assertthat_0.2.1
[31] promises_1.1.1 scales_1.1.1
[33] beeswarm_0.2.3 gtable_0.3.0
[35] rlang_0.4.10 systemfonts_0.3.2
[37] GlobalOptions_0.1.2 splines_4.0.3
[39] broom_0.7.3 yaml_2.2.1
[41] abind_1.4-5 modelr_0.1.8
[43] backports_1.2.1 httpuv_1.5.4
[45] tools_4.0.3 ellipsis_0.3.1
[47] raster_3.4-5 Rcpp_1.0.5
[49] plyr_1.8.6 zlibbioc_1.36.0
[51] classInt_0.4-3 RCurl_1.98-1.2
[53] GetoptLong_1.0.5 viridis_0.5.1
[55] zoo_1.8-8 haven_2.3.1
[57] ggrepel_0.9.0 cluster_2.1.0
[59] fs_1.5.0 magrittr_2.0.1
[61] openxlsx_4.2.3 reprex_0.3.0
[63] whisker_0.4 hms_0.5.3
[65] mime_0.9 evaluate_0.14
[67] fftwtools_0.9-9 xtable_1.8-4
[69] rio_0.5.16 jpeg_0.1-8.1
[71] readxl_1.3.1 shape_1.4.5
[73] compiler_4.0.3 V8_3.4.0
[75] KernSmooth_2.23-18 crayon_1.3.4
[77] htmltools_0.5.0 later_1.1.0.1
[79] tiff_0.1-6 lubridate_1.7.9.2
[81] DBI_1.1.0 dbplyr_2.0.0
[83] Matrix_1.3-2 car_3.0-10
[85] cli_2.2.0 pkgconfig_2.0.3
[87] km.ci_0.5-2 foreign_0.8-81
[89] sp_1.4-5 xml2_1.3.2
[91] svglite_1.2.3.2 vipor_0.4.5
[93] XVector_0.30.0 rvest_0.3.6
[95] digest_0.6.27 rmarkdown_2.6
[97] cellranger_1.1.0 survMisc_0.5.5
[99] edgeR_3.30.3 DelayedMatrixStats_1.10.1
[101] gdtools_0.2.3 curl_4.3
[103] shiny_1.5.0 rjson_0.2.20
[105] lifecycle_0.2.0 nlme_3.1-151
[107] jsonlite_1.7.2 carData_3.0-4
[109] BiocNeighbors_1.6.0 viridisLite_0.3.0
[111] limma_3.44.3 fansi_0.4.1
[113] pillar_1.4.7 lattice_0.20-41
[115] fastmap_1.0.1 httr_1.4.2
[117] glue_1.4.2 zip_2.1.1
[119] png_0.1-7 svgPanZoom_0.3.4
[121] class_7.3-17 stringi_1.5.3
[123] BiocSingular_1.4.0 e1071_1.7-4
[125] irlba_2.3.3