Last updated: 2021-02-08
Checks: 6 1
Knit directory: melanoma_publication_old_data/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200728)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 20a1458. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: ._.DS_Store
Ignored: code/.DS_Store
Ignored: code/._.DS_Store
Ignored: code/helper_functions/._findCommunity.R
Ignored: data/.DS_Store
Ignored: data/._.DS_Store
Ignored: data/._density_infiltration_BlockID.csv
Ignored: data/._layer_1_classification_rna.csv
Ignored: data/._manual_infiltration_scoring.csv
Ignored: data/._manual_infiltration_scoring_BlockID.csv
Ignored: data/._manual_infiltration_scoring_RC.csv
Ignored: data/._manual_infiltration_scoring_TH.csv
Ignored: data/._survdat_for_modelling.csv
Ignored: data/12plex_validation/
Ignored: data/200323_TMA_256_Hot Cold_Clinical Data_Updated Response Data_For Collaborators_latest updated_Mar_2020_for_Coxph_modeling.csv
Ignored: data/colour_vector.rds
Ignored: data/density_infiltration_BlockID.csv
Ignored: data/fraction_and_infiltration_scoring.csv
Ignored: data/layer_1_classification_protein.csv
Ignored: data/layer_1_classification_protein.rds
Ignored: data/layer_1_classification_rna.csv
Ignored: data/manual_infiltration_scoring.csv
Ignored: data/manual_infiltration_scoring_BlockID.csv
Ignored: data/manual_infiltration_scoring_RC.csv
Ignored: data/manual_infiltration_scoring_TH.csv
Ignored: data/protein/
Ignored: data/rna/
Ignored: data/safety_copy_SCE/
Ignored: data/sce_RNA.rds
Ignored: data/sce_protein.rds
Ignored: data/survdat_for_modelling.csv
Ignored: output/.DS_Store
Ignored: output/._.DS_Store
Ignored: output/._protein_neutrophil.png
Ignored: output/._rna_neutrophil.png
Ignored: output/PSOCKclusterOut/
Ignored: output/bcell_grouping.png
Ignored: output/dysfunction_correlation.pdf
Unstaged changes:
Modified: .gitignore
Modified: analysis/11_Bcell_TLS_identifiaction.Rmd
Modified: analysis/Figure_2.rmd
Modified: analysis/Figure_3.rmd
Modified: analysis/Figure_4.rmd
Modified: analysis/Figure_5.rmd
Modified: analysis/Summary_Statistics.rmd
Modified: analysis/Supp-Figure_2.rmd
Modified: analysis/Supp-Figure_3.rmd
Modified: analysis/Supp-Figure_4.rmd
Modified: analysis/Supp-Figure_5.rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Supp-Figure_2.rmd
) and HTML (docs/Supp-Figure_2.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 20a1458 | toobiwankenobi | 2021-02-04 | adapt figure order |
Rmd | f9bb33a | toobiwankenobi | 2021-02-04 | new Figure 5 and minor changes in figure order |
Rmd | 2ac1833 | toobiwankenobi | 2021-01-08 | changes to Figures |
Rmd | 9442cb9 | toobiwankenobi | 2020-12-22 | add all new files |
Rmd | 1af3353 | toobiwankenobi | 2020-10-16 | add stuff |
Rmd | a6b51cd | toobiwankenobi | 2020-10-14 | clean scripts, add new subfigures |
Rmd | 90196fc | toobiwankenobi | 2020-10-13 | Supp Figure 2 |
Rmd | 7affca0 | toobiwankenobi | 2020-10-13 | clean branch and add suppfigure 2 |
This script generates plots for Supplementary Figure 2.
sapply(list.files("code/helper_functions", full.names = TRUE), source)
code/helper_functions/calculateSummary.R
value ?
visible FALSE
code/helper_functions/censor_dat.R
value ?
visible FALSE
code/helper_functions/detect_mRNA_expression.R
value ?
visible FALSE
code/helper_functions/DistanceToClusterCenter.R
value ?
visible FALSE
code/helper_functions/findClusters.R
value ?
visible FALSE
code/helper_functions/findCommunity.R
value ?
visible FALSE
code/helper_functions/getCellCount.R
value ?
visible FALSE
code/helper_functions/getInfoFromString.R
value ?
visible FALSE
code/helper_functions/getSpotnumber.R
value ?
visible FALSE
code/helper_functions/plotBarFracCluster.R
value ?
visible FALSE
code/helper_functions/plotCellCounts.R
value ?
visible FALSE
code/helper_functions/plotCellFrac.R
value ?
visible FALSE
code/helper_functions/plotCellFracGroups.R
value ?
visible FALSE
code/helper_functions/plotCellFracGroupsSubset.R
value ?
visible FALSE
code/helper_functions/plotCellFractions.R
value ?
visible FALSE
code/helper_functions/plotDist.R
value ?
visible FALSE
code/helper_functions/scatter_function.R
value ?
visible FALSE
code/helper_functions/sceChecks.R
value ?
visible FALSE
code/helper_functions/validityChecks.R
value ?
visible FALSE
library(data.table)
library(survival)
library(ggplot2)
library(broom)
library(dplyr)
library(RColorBrewer)
library(ggalluvial)
library(tidyverse)
library(cowplot)
library(ggbeeswarm)
library(gridExtra)
library(SingleCellExperiment)
library(scater)
library(cba)
library(ComplexHeatmap)
library(reshape2)
library(rms)
library(ggrepel)
library(circlize)
library(coxme)
library(rstatix)
library(ggpubr)
# clinical data
dat <- read_csv("data/protein/clinical_data_protein.csv")
dat_survival = fread(file = "data/survdat_for_modelling.csv",stringsAsFactors = FALSE)
dat_inflammation = fread(file = "data/manual_infiltration_scoring_BlockID.csv", header = TRUE)
# SCE object
sce_prot = readRDS(file = "data/sce_protein.rds")
sce_rna = readRDS(file = "data/sce_RNA.rds")
targets <- metadata(sce_rna)$chemokines_morethan600_withcontrol
Note: as the cohort is very diverse, we are using the BlockID as the minimal unit since clinical parameters are described per BlockID. However, sometimes we do have patients of which we have multiple FFPE blocks (BlockIDs). Nonetheless, clinical parameters are not given per patient but per patient FFPE block and are therefore considered the minimial unit.
dat[dat$BlockID %in% unique(sce_prot[,sce_prot$Location == "CTRL"]$BlockID),]$MM_location <- "Control"
# remove control samples
dat <- dat[dat$BlockID %in% unique(sce_prot[,sce_prot$Location != "CTRL"]$BlockID),]
p1 <- unique(dat[,c("BlockID","MM_location")]) %>%
ggplot()+
geom_bar(aes(y=MM_location),stat ="count") +
xlab("BlockIDs per Location") +
ylab("Metastasis Location") +
theme_bw()+
theme(text = element_text(size=16))
p2 <- dat %>%
ggplot()+
geom_bar(aes(x=BlockID, fill=(MM_location)),stat="count")+
theme_bw()+
theme(axis.text.x = element_text(angle = 90,vjust = 0.5)) +
ylab("Number of Samples") +
guides(fill=guide_legend(title="Metasis Location")) +
theme(text = element_text(size=16),
axis.text.x = element_text(size=7))
plot_grid(p1,p2,rel_widths = c(1.25,3))
sce_rna$MM_location <- ifelse(sce_rna$MM_location %in% c("skin", "skin_undefine"), "skin_undefined", sce_rna$MM_location)
groups <- data.frame(colData(sce_rna)) %>%
distinct(ImageNumber, .keep_all = T) %>%
group_by(MM_location) %>%
distinct(PatientID, .keep_all = T) %>%
summarise(n=n()) %>%
filter(n>=10) %>%
arrange(-n)
fractions_per_image <- data.frame(colData(sce_rna)) %>%
group_by(ImageNumber, MM_location, expressor, celltype) %>%
summarise(n = n()) %>%
group_by(ImageNumber) %>%
mutate(fraction_per_image = n / sum(n)) %>%
group_by(ImageNumber, expressor) %>%
mutate(group_fraction = sum(fraction_per_image)) %>%
ungroup() %>%
filter(expressor %in% targets & MM_location %in% groups$MM_location)
# fraction of expressor cells per image
fraction_expressor_per_image <- fractions_per_image %>%
distinct(ImageNumber, MM_location, expressor, .keep_all = T) %>%
reshape2::dcast(ImageNumber + MM_location ~ expressor, value.var = "group_fraction", fill = 0) %>%
reshape2::melt(id.vars = c("ImageNumber", "MM_location"), variable.name = "expressor",
value.name = "fraction_per_image")
# fraction of celltype expressing a certain combi per image
celltype_fractions <- fractions_per_image %>%
distinct(ImageNumber, celltype, expressor, .keep_all = T) %>%
reshape2::dcast(ImageNumber + MM_location + expressor ~ celltype, value.var = "fraction_per_image", fill = 0) %>%
reshape2::melt(id.vars = c("ImageNumber", "MM_location", "expressor"),
variable.name = "celltype", value.name = "fraction_per_image") %>%
reshape2::dcast(ImageNumber + MM_location + celltype ~ expressor, value.var = "fraction_per_image", fill = 0) %>%
reshape2::melt(id.vars = c("ImageNumber", "MM_location", "celltype"),
variable.name = "expressor", value.name = "fraction_per_image") %>%
group_by(MM_location, expressor, celltype) %>%
summarise(sum_fraction = sum(fraction_per_image)) %>% # sum-up fractions over all images
group_by(MM_location, expressor) %>%
mutate(proportions = sum_fraction / sum(sum_fraction)) # calculate proportions for each expressor
#median_celltype_fraction <- fractions_per_image %>%
#distinct(ImageNumber, celltype, expressor, .keep_all = T) %>%
#reshape2::dcast(ImageNumber + MM_location + expressor ~ celltype, value.var = "fraction_per_image", fill = 0) %>%
#reshape2::melt(id.vars = c("ImageNumber", "MM_location", "expressor"),
#variable.name = "celltype", value.name = "fraction_per_image") %>%
#reshape2::dcast(ImageNumber + MM_location + celltype ~ expressor, value.var = "fraction_per_image", fill = 0) %>%
#reshape2::melt(id.vars = c("ImageNumber", "MM_location", "celltype"),
#variable.name = "expressor", value.name = "fraction_per_image") %>%
#group_by(MM_location, expressor, celltype) %>%
#summarise(median_fraction = median(fraction_per_image)) %>%
#group_by(MM_location, expressor) %>%
#mutate(proportions = median_fraction / sum(median_fraction))
plot_list <- list()
for(i in groups$MM_location) {
a <- fraction_expressor_per_image %>%
filter(MM_location == i) %>%
group_by(ImageNumber, expressor) %>%
ggplot(., aes(y=expressor, x=fraction_per_image)) +
geom_boxplot() +
geom_point(alpha=0.2) +
theme_bw() +
theme(axis.title.y = element_blank(),
axis.text.y = element_text(hjust=0.5)) +
#scale_x_log10() +
#annotation_logticks(sides = "bottom") +
xlab("Cell Fraction per Image") +
coord_cartesian(xlim = c(0,0.05))
b <- celltype_fractions %>%
filter(MM_location == i) %>%
ggplot(., aes(y=expressor, x=-proportions, fill=celltype)) +
geom_bar(stat = "identity") +
theme_bw() +
theme(axis.text.y = element_blank(),
axis.title.y = element_blank(),
legend.position = "none") +
xlab("Producing Cell Types") +
scale_fill_manual(values = unname(metadata(sce_rna)$colour_vectors$celltype),
breaks = names(metadata(sce_rna)$colour_vectors$celltype),
labels = names(metadata(sce_rna)$colour_vectors$celltype)) +
scale_x_continuous(breaks=c(-1.00,-0.75,-0.5, -0.25, 0.00),
labels=c("100%", "75%", "50%", "25%", "0%"))
grid.arrange(b,a,nrow=1,
widths = c(.75,1),
top = i)
}
# add control location to sce
sce_rna$MM_location_simplified2 <- sce_rna$MM_location_simplified
sce_rna[,sce_rna$Location == "CTRL" & sce_rna$TissueType == "Skin"]$MM_location_simplified2 <- "control skin"
sce_rna[,sce_rna$Location == "CTRL" & sce_rna$TissueType == "Lymphnode"]$MM_location_simplified2 <- "control LN"
sce_rna[,sce_rna$Location == "CTRL" & sce_rna$TissueType == "PSO"]$MM_location_simplified2 <- "control psoriasis"
frac <- data.frame(colData(sce_rna)) %>%
filter(MM_location_simplified2 != "control psoriasis") %>%
group_by(Description, MM_location_simplified2, expressor) %>%
summarise(n=n()) %>%
mutate(fraction = n / sum(n)) %>%
filter(expressor %in% targets) %>%
reshape2::dcast(Description + MM_location_simplified2 ~ expressor, value.var = "fraction", fill = 0) %>%
reshape2::melt(id.vars = c("Description", "MM_location_simplified2"), variable.name = "expressor", value.name = "fraction")
ggplot(frac, aes(x=expressor, y = fraction, fill = MM_location_simplified2)) +
geom_boxplot(alpha=1, outlier.size = 0.5) +
#geom_jitter(size = 0.75, alpha=0.6, position = position_jitterdodge(dodge.width = 0.75,jitter.width = 0.05), aes(col=MM_location_simplified2)) +
scale_color_discrete(guide=FALSE) +
theme_bw() +
theme(text = element_text(size = 15),
axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) +
guides(fill=guide_legend(title="Met Location", override.aes = aes(lwd=0.5))) +
xlab("") +
ylab("Fractions") +
coord_cartesian(ylim = c(0,0.075))
targets <- metadata(sce_rna)$chemokines_morethan600_withcontrol
# subset sce_rna
group_size <- data.frame(colData(sce_rna)) %>%
group_by(ImageNumber, Mutation) %>%
distinct(ImageNumber, .keep_all = T) %>%
group_by(Mutation) %>%
summarise(n=n()) %>%
filter(n>10 & Mutation != "")
sce_rna_sub <- sce_rna[,sce_rna$Mutation %in% group_size$Mutation]
a <- plotCellCounts(sce = sce_rna_sub,
sce_sub = sce_rna_sub[,which(sce_rna_sub$expressor %in% targets)],
cellID = "cellID",
colour_by = "expressor",
split_by = "Mutation",
imageID = "ImageNumber",
normalize = TRUE,
show_n = FALSE,
colour_vector = metadata(sce_rna)$colour_vectors$chemokine_combinations) +
guides(fill=guide_legend("Chemokine")) +
theme(text = element_text(size=16))
b <- plotCellCounts(sce = sce_rna_sub[,which(sce_rna_sub$expressor %in% targets)],
cellID = "cellID",
colour_by = "celltype",
split_by = "Mutation",
imageID = "ImageNumber",
proportion = TRUE,
show_n = FALSE,
colour_vector = metadata(sce_rna)$colour_vectors$celltype) +
guides(fill=guide_legend("Cell Type")) +
theme(text = element_text(size=16))
# fraction of chemokine-expressing cells per image
t <- data.frame(colData(sce_rna_sub)) %>%
group_by(ImageNumber, Mutation, chemokine, MM_location_simplified) %>%
summarise(n=n()) %>%
group_by(ImageNumber) %>%
mutate(fraction = n / sum(n)) %>%
reshape2::dcast(ImageNumber + Mutation + MM_location_simplified ~ chemokine, value.var = "fraction")
median_expression <- median(t$`TRUE`)
stat.test <- t %>%
group_by(Mutation) %>%
t_test(data = ., mu = median_expression, `TRUE` ~ 1, alternative = "greater") %>%
adjust_pvalue(method="BH") %>%
add_significance() %>%
add_x_position(x = "Mutation", dodge = 0.8)
c <- ggplot(t, aes(x=Mutation, y=`TRUE`)) +
geom_boxplot(alpha=0.2, lwd=1.5) +
geom_quasirandom(aes(col=MM_location_simplified), size=2, alpha=.8) +
geom_hline(yintercept = median_expression, linetype=2, size=2) +
stat_pvalue_manual(stat.test, x = "x", label = "p.adj.signif", size = 7, y.position = 0.3) +
xlab("") +
ylab("Fraction of Chemokine-Expressing Cells") +
theme_bw() +
theme(text = element_text(size=16),
axis.text.x = element_text(angle=45, hjust=1, vjust=1)) +
guides(col=guide_legend("Location")) +
coord_cartesian(ylim=c(0,0.3))
grid.arrange(a,b,c,nrow=1,
widths = c(1,1,1))
# MM_location for Mutations
data.frame(colData(sce_rna_sub)) %>%
distinct(ImageNumber, .keep_all = T) %>%
group_by(Mutation, MM_location_simplified) %>%
summarise(n=n()) %>%
group_by(Mutation) %>%
mutate(percentage = n / sum(n) * 100)
# A tibble: 9 x 4
# Groups: Mutation [3]
Mutation MM_location_simplified n percentage
<chr> <chr> <int> <dbl>
1 BRAF LN 30 42.3
2 BRAF other 10 14.1
3 BRAF skin 31 43.7
4 NRAS LN 16 32
5 NRAS other 10 20
6 NRAS skin 24 48
7 wt LN 6 21.4
8 wt other 5 17.9
9 wt skin 17 60.7
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04 LTS
Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.8.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=C
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] grid parallel stats4 stats graphics grDevices utils
[8] datasets methods base
other attached packages:
[1] ggpubr_0.4.0 rstatix_0.6.0
[3] coxme_2.2-16 bdsmatrix_1.3-4
[5] circlize_0.4.12 ggrepel_0.9.0
[7] rms_6.1-0 SparseM_1.78
[9] Hmisc_4.4-2 Formula_1.2-4
[11] lattice_0.20-41 reshape2_1.4.4
[13] ComplexHeatmap_2.4.3 cba_0.2-21
[15] proxy_0.4-24 scater_1.16.2
[17] SingleCellExperiment_1.12.0 SummarizedExperiment_1.20.0
[19] Biobase_2.50.0 GenomicRanges_1.42.0
[21] GenomeInfoDb_1.26.2 IRanges_2.24.1
[23] S4Vectors_0.28.1 BiocGenerics_0.36.0
[25] MatrixGenerics_1.2.0 matrixStats_0.57.0
[27] gridExtra_2.3 ggbeeswarm_0.6.0
[29] cowplot_1.1.1 forcats_0.5.0
[31] stringr_1.4.0 purrr_0.3.4
[33] readr_1.4.0 tidyr_1.1.2
[35] tibble_3.0.4 tidyverse_1.3.0
[37] ggalluvial_0.12.3 RColorBrewer_1.1-2
[39] dplyr_1.0.2 broom_0.7.3
[41] ggplot2_3.3.3 survival_3.2-7
[43] data.table_1.13.6 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] readxl_1.3.1 backports_1.2.1
[3] plyr_1.8.6 splines_4.0.3
[5] BiocParallel_1.22.0 TH.data_1.0-10
[7] digest_0.6.27 htmltools_0.5.0
[9] viridis_0.5.1 fansi_0.4.1
[11] magrittr_2.0.1 checkmate_2.0.0
[13] cluster_2.1.0 openxlsx_4.2.3
[15] modelr_0.1.8 sandwich_3.0-0
[17] jpeg_0.1-8.1 colorspace_2.0-0
[19] rvest_0.3.6 haven_2.3.1
[21] xfun_0.20 crayon_1.3.4
[23] RCurl_1.98-1.2 jsonlite_1.7.2
[25] zoo_1.8-8 glue_1.4.2
[27] gtable_0.3.0 zlibbioc_1.36.0
[29] XVector_0.30.0 MatrixModels_0.4-1
[31] GetoptLong_1.0.5 DelayedArray_0.16.0
[33] car_3.0-10 BiocSingular_1.4.0
[35] shape_1.4.5 abind_1.4-5
[37] scales_1.1.1 mvtnorm_1.1-1
[39] DBI_1.1.0 Rcpp_1.0.5
[41] viridisLite_0.3.0 htmlTable_2.1.0
[43] clue_0.3-58 foreign_0.8-81
[45] rsvd_1.0.3 htmlwidgets_1.5.3
[47] httr_1.4.2 ellipsis_0.3.1
[49] farver_2.0.3 pkgconfig_2.0.3
[51] nnet_7.3-14 dbplyr_2.0.0
[53] utf8_1.1.4 labeling_0.4.2
[55] tidyselect_1.1.0 rlang_0.4.10
[57] later_1.1.0.1 munsell_0.5.0
[59] cellranger_1.1.0 tools_4.0.3
[61] cli_2.2.0 generics_0.1.0
[63] evaluate_0.14 yaml_2.2.1
[65] knitr_1.30 fs_1.5.0
[67] zip_2.1.1 nlme_3.1-151
[69] whisker_0.4 quantreg_5.82
[71] xml2_1.3.2 compiler_4.0.3
[73] rstudioapi_0.13 curl_4.3
[75] beeswarm_0.2.3 png_0.1-7
[77] ggsignif_0.6.0 reprex_0.3.0
[79] stringi_1.5.3 Matrix_1.3-2
[81] vctrs_0.3.6 pillar_1.4.7
[83] lifecycle_0.2.0 GlobalOptions_0.1.2
[85] BiocNeighbors_1.6.0 bitops_1.0-6
[87] irlba_2.3.3 conquer_1.0.2
[89] httpuv_1.5.4 R6_2.5.0
[91] latticeExtra_0.6-29 promises_1.1.1
[93] rio_0.5.16 vipor_0.4.5
[95] codetools_0.2-18 polspline_1.1.19
[97] MASS_7.3-53 assertthat_0.2.1
[99] rprojroot_2.0.2 rjson_0.2.20
[101] withr_2.3.0 multcomp_1.4-15
[103] GenomeInfoDbData_1.2.4 hms_0.5.3
[105] rpart_4.1-15 rmarkdown_2.6
[107] DelayedMatrixStats_1.10.1 carData_3.0-4
[109] git2r_0.28.0 lubridate_1.7.9.2
[111] base64enc_0.1-3