Last updated: 2021-02-12
Checks: 7 0
Knit directory: melanoma_publication_old_data/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200728)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 2e443a5. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: ._.DS_Store
Ignored: analysis/._clinical metadata preparation.Rmd
Ignored: code/.DS_Store
Ignored: code/._.DS_Store
Ignored: data/.DS_Store
Ignored: data/._.DS_Store
Ignored: data/data_for_analysis/
Ignored: data/full_data/
Ignored: output/.DS_Store
Ignored: output/._.DS_Store
Ignored: output/._protein_neutrophil.png
Ignored: output/._rna_neutrophil.png
Ignored: output/PSOCKclusterOut/
Ignored: output/bcell_grouping.png
Ignored: output/dysfunction_correlation.pdf
Untracked files:
Untracked: analysis/00_prepare_clinical_dat.rmd
Untracked: code/helper_functions/findMilieu.R
Untracked: code/helper_functions/findPatch.R
Unstaged changes:
Modified: .gitignore
Modified: analysis/01_Protein_read_data.rmd
Modified: analysis/01_RNA_read_data.rmd
Modified: analysis/02_Protein_annotations.rmd
Modified: analysis/02_RNA_annotations.rmd
Modified: analysis/03_Protein_quality_control.rmd
Modified: analysis/03_RNA_quality_control.rmd
Modified: analysis/04_1_Protein_celltype_classification.rmd
Modified: analysis/04_1_RNA_celltype_classification.rmd
Modified: analysis/04_2_RNA_classification_subclustering.rmd
Modified: analysis/04_2_protein_classification_subclustering.rmd
Modified: analysis/05_RNA_chemokine_expressing_cells.rmd
Modified: analysis/06_RNA_chemokine_patch_detection.rmd
Modified: analysis/07_TCF7_PD1_gating.rmd
Modified: analysis/08_color_vectors.rmd
Modified: analysis/09_Tcell_Score.Rmd
Modified: analysis/10_Dysfunction_Score.rmd
Modified: analysis/11_Bcell_Score.Rmd
Modified: analysis/Figure_1.rmd
Modified: analysis/Figure_2.rmd
Modified: analysis/Figure_3.rmd
Modified: analysis/Figure_4.rmd
Modified: analysis/Figure_5.rmd
Modified: analysis/Summary_Statistics.rmd
Modified: analysis/Supp-Figure_1.rmd
Modified: analysis/Supp-Figure_2.rmd
Modified: analysis/Supp-Figure_3.rmd
Modified: analysis/Supp-Figure_4.rmd
Modified: analysis/Supp-Figure_5.rmd
Modified: analysis/XX_hazard_ratio.rmd
Deleted: code/findPackages.R
Deleted: code/helper_functions/findClusters.R
Deleted: code/helper_functions/findCommunity.R
Deleted: code/helper_functions/getCellCount.R
Deleted: code/helper_functions/plotBarFracCluster.R
Deleted: code/helper_functions/plotCellFrac.R
Deleted: code/helper_functions/plotCellFracGroups.R
Deleted: code/helper_functions/plotCellFracGroupsSubset.R
Modified: code/helper_functions/scatter_function.R
Modified: code/helper_functions/validityChecks.R
Deleted: data/mask_comparison/20190809_ZTMA256.1_slide2_TH_s1_p1_r15_a15_ac_full.tiff
Deleted: data/mask_comparison/20190809_ZTMA256.1_slide2_TH_s1_p1_r15_a15_ac_ilastik_s2_Probabilities_equalized_cellmask.tiff
Deleted: data/mask_comparison/20191023_ZTMA256.1_slide3_TH_s0_p10_r4_a4_ac_full.tiff
Deleted: data/mask_comparison/20191023_ZTMA256.1_slide3_TH_s0_p10_r4_a4_ac_ilastik_s2_Probabilities_equalized_cellmask.tiff
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
There are no past versions. Publish this analysis with wflow_publish()
to start tracking its development.
sapply(list.files("code/helper_functions/", full.names = TRUE), source)
code/helper_functions//calculateSummary.R
value ?
visible FALSE
code/helper_functions//censor_dat.R
value ?
visible FALSE
code/helper_functions//detect_mRNA_expression.R
value ?
visible FALSE
code/helper_functions//DistanceToClusterCenter.R
value ?
visible FALSE
code/helper_functions//findMilieu.R code/helper_functions//findPatch.R
value ? ?
visible FALSE FALSE
code/helper_functions//getInfoFromString.R
value ?
visible FALSE
code/helper_functions//getSpotnumber.R
value ?
visible FALSE
code/helper_functions//plotCellCounts.R
value ?
visible FALSE
code/helper_functions//plotCellFractions.R
value ?
visible FALSE
code/helper_functions//plotDist.R
value ?
visible FALSE
code/helper_functions//scatter_function.R
value ?
visible FALSE
code/helper_functions//sceChecks.R
value ?
visible FALSE
code/helper_functions//validityChecks.R
value ?
visible FALSE
library(LSD)
library(SingleCellExperiment)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats
Attaching package: 'MatrixGenerics'
The following objects are masked from 'package:matrixStats':
colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
colWeightedMeans, colWeightedMedians, colWeightedSds,
colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
rowWeightedSds, rowWeightedVars
Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: parallel
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':
clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
anyDuplicated, append, as.data.frame, basename, cbind, colnames,
dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
union, unique, unsplit, which.max, which.min
Loading required package: S4Vectors
Attaching package: 'S4Vectors'
The following object is masked from 'package:base':
expand.grid
Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
Attaching package: 'Biobase'
The following object is masked from 'package:MatrixGenerics':
rowMedians
The following objects are masked from 'package:matrixStats':
anyMissing, rowMedians
library(ggplot2)
library(scater)
library(viridis)
Loading required package: viridisLite
library(Rphenograph)
library(igraph)
Attaching package: 'igraph'
The following object is masked from 'package:scater':
normalize
The following object is masked from 'package:GenomicRanges':
union
The following object is masked from 'package:IRanges':
union
The following object is masked from 'package:S4Vectors':
union
The following objects are masked from 'package:BiocGenerics':
normalize, path, union
The following objects are masked from 'package:stats':
decompose, spectrum
The following object is masked from 'package:base':
union
library(CATALYST)
library(workflowr)
sce = readRDS(file = "data/data_for_analysis/sce_protein.rds")
for(i in 1:10){
scatter_x_y(sce,x = "CD8",y = "pERK",imagenumber =i, xlim = c(0,5), ylim = c(0,5))
abline(h = 1.25)
abline(v=1.5)
abline(a = 0, b= 1)
}
# Aggregate the counts. calculateSummary is a function written from Nils
mean_sce <- calculateSummary(sce, split_by = "celltype",
exprs_values = "counts")
# Exclude DNA and Histone
mean_sce <- mean_sce[!grepl("DNA|Histone", rownames(mean_sce)),]
# Transform and scale
assay(mean_sce, "arcsinh") <- asinh(assay(mean_sce, "meanCounts"))
assay(mean_sce, "arcsinh_scaled") <- t(scale(t(asinh(assay(mean_sce, "meanCounts")))))
# Linear scale
plotHeatmap(mean_sce, exprs_values = "arcsinh",
features = c(rownames(mean_sce)),
colour_columns_by = "celltype",
color = viridis(100), cluster_rows = FALSE, gaps_row = 10)
# Linear scale
plotHeatmap(mean_sce, exprs_values = "arcsinh_scaled",
features = c(rownames(mean_sce)),
colour_columns_by = "celltype",
color = colorRampPalette(c("dark blue", "white", "dark red"))(100),
zlim = c(-3,3), cluster_rows = TRUE, gaps_row = 10)
# Select markers
marker_list <- list()
marker_list$Tumor <- c("Ki67", "PDL1", "PARP", "H3K27me3","CXCR2","HLADR","S100","Sox9","pERK","CD36",
"p75","MiTF","bCatenin","Collagen1","pS6","IDO1","SOX10")
marker_list$Neutrophil <- c("CD15", "PDL1", "MPO", "CD11b")
marker_list$Tregulatory <- c("IDO1", "PD1", "FOXP3", "ICOS", "CD4", "Ki67", "GrzB",
"CD45RA", "CD45RO")
marker_list$Tcytotoxic <- c("IDO1", "TOX1", "PD1", "TCF7", "ICOS", "CD8","Ki67", "GrzB",
"CD45RA", "CD45RO")
marker_list$Thelper <- c("IDO1", "TOX1", "PD1", "TCF7",
"FOXP3", "ICOS", "CD4", "Ki67", "GrzB",
"CD45RA", "CD45RO")
marker_list$BnTcell <- c("IDO1", "TOX1", "PD1", "TCF7",
"FOXP3", "ICOS", "CD8", "CD4", "Ki67", "GrzB",
"CD45RA", "CD45RO", "CD20","HLADR","H3K27me3","pS6","pERK", "CD7")
marker_list$pDC <- c("CD303","IDO1","GrzB","CXCR2","CD11b")
marker_list$Bcell <- c("Ki67","CD45RA", "CD45RO", "CD20","HLADR","H3K27me3","pS6","pERK")
marker_list$Macrophage <- c("Caveolin1", "PDL1", "PARP", "H3K27me3","CXCR2","HLADR","CD45RO","CD45RA","CD68","pERK","CD36", "Collagen1","CD11c","pS6","IDO1","CD206")
marker_list$Stroma <- c("Caveolin1", "CD68","CD36", "Collagen1","SMA")
marker_list$unknown <- rownames(sce[rowData(sce)$good_marker,])
FlowSOM first because it is faster
## the FlowSOM function from CATALYST needs an another column in the rowData of the sce to work properly:
rowData(sce)$marker_class <- "state"
# vector for clustering
fs_clustering <- vector(length = ncol(sce))
# create the "exprs" slot in the assay data (needed for CATALYST)
assay(sce, "exprs") <- assay(sce,"asinh")
# Macrophage, Bcells, Thelper, Tcytotoxic, Tother and BnT cells will be clustered for a total of 6 clustes each
set.seed(12345)
for(i in c("Macrophage","Thelper","Tcytotoxic")){
cur_sce <- sce[,sce$celltype == i]
cur_sce <- cluster(cur_sce,features = marker_list[i][[1]],ydim = 2,xdim = 3,maxK = 4)
fs_clustering[sce$celltype == i] <- cur_sce$cluster_id
}
o running FlowSOM clustering...
o running ConsensusClusterPlus metaclustering...
o running FlowSOM clustering...
o running ConsensusClusterPlus metaclustering...
o running FlowSOM clustering...
o running ConsensusClusterPlus metaclustering...
# pDCs and Neutrophils will be clustered to 4 clusteres
for(i in c("pDC","Neutrophil","BnTcell","Bcell","Tregulatory","Stroma", "unknown")){
cur_sce <- sce[,sce$celltype == i]
cur_sce <- cluster(cur_sce,features = marker_list[i][[1]],ydim = 2,xdim = 2,maxK = 3)
fs_clustering[sce$celltype == i] <- cur_sce$cluster_id
}
o running FlowSOM clustering...
o running ConsensusClusterPlus metaclustering...
o running FlowSOM clustering...
o running ConsensusClusterPlus metaclustering...
o running FlowSOM clustering...
o running ConsensusClusterPlus metaclustering...
o running FlowSOM clustering...
o running ConsensusClusterPlus metaclustering...
o running FlowSOM clustering...
o running ConsensusClusterPlus metaclustering...
o running FlowSOM clustering...
o running ConsensusClusterPlus metaclustering...
o running FlowSOM clustering...
o running ConsensusClusterPlus metaclustering...
# Tumor will be clustered into 9 clusters
cur_sce <- sce[,sce$celltype == "Tumor"]
cur_sce <- cluster(cur_sce,features = marker_list["Tumor"][[1]],ydim = 3,xdim = 3,maxK = 7)
o running FlowSOM clustering...
o running ConsensusClusterPlus metaclustering...
fs_clustering[sce$celltype == "Tumor"] <- cur_sce$cluster_id
# Save in SCE object
colData(sce)$celltype_clustered <- as.factor(fs_clustering)
sce$celltype_clustered <- paste0(sce$celltype, "_", sce$celltype_clustered)
# Aggregate the counts
mean_sce <- calculateSummary(sce, split_by = c("celltype","celltype_clustered"),
exprs_values = "counts")
# Exclude DNA and Histone
mean_sce <- mean_sce[!grepl("DNA|Histone", rownames(mean_sce)),]
# Transform and scale
assay(mean_sce, "arcsinh") <- asinh(assay(mean_sce, "meanCounts"))
assay(mean_sce, "arcsinh_scaled") <- t(scale(t(asinh(assay(mean_sce, "meanCounts")))))
# Linear scale
plotHeatmap(mean_sce, exprs_values = "arcsinh",
colour_columns_by = c("celltype"),
color = viridis(100), labels_col = mean_sce$celltype_clustered,
show_colnames = TRUE, annotation_legend = FALSE, borders_color = NA)
# Scaled
plotHeatmap(mean_sce, exprs_values = "arcsinh_scaled",
colour_columns_by = c("celltype"),
labels_col = mean_sce$celltype_clustered,
show_colnames = TRUE, annotation_legend = TRUE, borders_color = NA,
color = colorRampPalette(c("dark blue", "white", "dark red"))(100),
zlim = c(-4, 4),legend = TRUE)
table(sce$celltype_clustered)
Bcell_1 Bcell_2 Bcell_3 Bcell_4 BnTcell_1
22407 4277 13208 10504 6449
BnTcell_2 BnTcell_3 BnTcell_4 Macrophage_1 Macrophage_2
6905 8722 9202 12808 14507
Macrophage_3 Macrophage_4 Macrophage_5 Macrophage_6 Neutrophil_1
11276 7769 7634 8465 3483
Neutrophil_2 Neutrophil_3 Neutrophil_4 pDC_1 pDC_2
2949 2105 2479 2667 1837
pDC_3 pDC_4 Stroma_1 Stroma_2 Stroma_3
1816 943 9888 14920 17433
Stroma_4 Tcytotoxic_1 Tcytotoxic_2 Tcytotoxic_3 Tcytotoxic_4
18504 7484 9623 6782 8039
Tcytotoxic_5 Tcytotoxic_6 Thelper_1 Thelper_2 Thelper_3
10739 10535 11094 9694 11068
Thelper_4 Thelper_5 Thelper_6 Tregulatory_1 Tregulatory_2
3019 12192 12970 3081 2345
Tregulatory_3 Tregulatory_4 Tumor_1 Tumor_2 Tumor_3
2705 1275 76990 78446 90295
Tumor_4 Tumor_5 Tumor_6 Tumor_7 Tumor_8
52280 72756 79784 45770 53527
Tumor_9 unknown_1 unknown_2 unknown_3 unknown_4
74583 2672 1570 10194 4735
annotations <- sce$celltype_clustered
# annotations[annotations == "other_4"] <- "Other_CD206Low_pS6Low"
# annotations[annotations == "other_2"] <- "Tumor_SOX9Low_SOX10+_MITF+_S100+_bCatenin++"
# annotations[annotations == "other_3"] <- "Other_SOX10Low_MITFLow_bCatenin+"
# annotations[annotations == "other_1"] <- "Other_CaveolinLow"
# annotations[annotations == "other_5"] <- "Vasculature_SMA++_Collagen+_Caveolin+"
# annotations[annotations == "other_6"] <- "Stroma_SMA+_Collagen++_Caveolin++_CD36++"
#
# annotations[annotations == "Tumor_2"] <- "Tumor_SOX9++_p75+"
# annotations[annotations == "Tumor_3"] <- "Tumor_SOX10+_MITFLow_CD36Low"
# annotations[annotations == "Tumor_4"] <- "Tumor_SOX10Low_S100+"
# annotations[annotations == "Tumor_5"] <- "Tumor_SOX9++_SOX10+_MITF+_S100Low"
# annotations[annotations == "Tumor_8"] <- "Tumor_SOX9Low_SOX10Low_MITFLow_p75+"
# annotations[annotations == "Tumor_9"] <- "Tumor_SOX10+_MITF+_S100++"
# annotations[annotations == "Tumor_6"] <- "Tumor_S100+"
# annotations[annotations == "Tumor_1"] <- "Tumor_SOX10Low_MITFLow_HLADR+"
# annotations[annotations == "Tumor_7"] <- "Tumor_SOX10+_MITF++_S100+_pS6+"
#
# annotations[annotations == "Bcells_1"] <- "Bcells_pErkLow_H3K27meLow"
# annotations[annotations == "Bcells_4"] <- "Bcells_pErkLow_H3K27meLow"
# annotations[annotations == "Bcells_2"] <- "Bcells_H3K27me_LowpS6Low"
# annotations[annotations == "Bcells_3"] <- "Bcells_CD19++_pErkLow_H3K27meLow"
# annotations[annotations == "Bcells_5"] <- "Bcells_Ki67++"
# annotations[annotations == "Bcells_6"] <- "Bcells_SMALow"
#
# annotations[annotations == "BnT_1"] <- "Bcells_CD3Low_CD4Low"
# annotations[annotations == "BnT_2"] <- "Bcells_pErkLow_H3K27meLow"
# annotations[annotations == "BnT_6"] <- "BnT_CD8+"
# annotations[annotations == "BnT_4"] <- "BnT_CD8+"
# annotations[annotations == "BnT_5"] <- "BnT_CD4+_TCF7+"
# annotations[annotations == "BnT_3"] <- "BnT_CD4+_ICOS++_PD1++_Ki67+"
#
# annotations[annotations == "T_other_4"] <- "Tcells_undefined"
# annotations[annotations == "T_other_5"] <- "Tcells_undefined"
# annotations[annotations == "T_other_3"] <- "Tcells_CD15_LowGrzB+"
# annotations[annotations == "T_other_1"] <- "Tcells_Ki67++"
# annotations[annotations == "T_other_2"] <- "Tcells_CaveolinLow_SMALow"
# annotations[annotations == "T_other_6"] <- "Tcells_undefined"
#
# annotations[annotations == "T_helper_2"] <- "Thelper_CD11cLow_HLADRLow"
# annotations[annotations == "T_helper_5"] <- "Thelper_SMALow_CaveolinLow"
# annotations[annotations == "T_helper_1"] <- "Thelper_TCF7++"
# annotations[annotations == "T_helper_6"] <- "Thelper_FoxP3++_ICOS+_CD11cLow_CD206Low"
# annotations[annotations == "T_helper_3"] <- "Thelper_FoxP3Low_pERKLow"
# annotations[annotations == "T_helper_4"] <- "Thelper_FoxP3Low"
#
# annotations[annotations == "T_cytotoxic_3"] <- "Tcytotoxic_PD1+_TOX1+_GrzBLow"
# annotations[annotations == "T_cytotoxic_5"] <- "Tcytotoxic_TCF7+_H3K27meLow"
# annotations[annotations == "T_cytotoxic_6"] <- "Tcytotoxic_PD1+_TOX1+_GrzB+_ICOSLow_Ki67+"
# annotations[annotations == "T_cytotoxic_1"] <- "Tcytotoxic_GrzBLow_SMALow_CaveolinLow"
# annotations[annotations == "T_cytotoxic_2"] <- "Tcytotoxic_GrzBLow_pS6Low"
# annotations[annotations == "T_cytotoxic_4"] <- "Tcytotoxic_PD1+_TOX1+_GrzBLow_ICOSLow_CD11cLow_CD206Low"
#
# annotations[annotations == "Macrophage_4"] <- "Macrophage_CD68Low_CaveolinLow"
# annotations[annotations == "Macrophage_6"] <- "Tumor_CD68Low_S100Low_bCateninLow_MITFLow_SOX10Low_HLADR+"
# annotations[annotations == "Macrophage_2"] <- "Macrophage_CD68Low_CD206++_CD36Low"
# annotations[annotations == "Macrophage_1"] <- "Macrophage_CD68Low_pS6Low_S100Low"
# annotations[annotations == "Macrophage_3"] <- "Macrophage_CD68+_CD11c+_CD206++_CXCR2+_PDL1+"
# annotations[annotations == "Macrophage_5"] <- "Macrophage_CD68++_CD11c+_CD36+_Caveolin+_Collagen+"
#
# annotations[annotations == "pDC_1"] <- "pDC_IDO1+_GrzB+"
# annotations[annotations == "pDC_2"] <- "pDC_IDO1+_TOX1+_CD11b+"
# annotations[annotations == "pDC_3"] <- "pDC_IDO1++_GrzB++"
# annotations[annotations == "pDC_4"] <- "pDC_Ido1+_PARP++"
#
# annotations[annotations == "Neutrophil_2"] <- "Neutrophil_CD11b+_CD15++_MPO+_PDL1++"
# annotations[annotations == "Neutrophil_4"] <- "Neutrophil_CD11b+_CD15+_MPO+_PDL1Low"
# annotations[annotations == "Neutrophil_3"] <- "Neutrophil_CD11b++_CD15++_MPO++_CXCR2Low_PDL1+"
# annotations[annotations == "Neutrophil_1"] <- "Neutrophil_CD11b+_CD15+_MPO++"
sce$cellAnnotation <- annotations
mean_sce <- calculateSummary(sce, split_by = c("celltype","cellAnnotation"),
exprs_values = "counts")
# Exclude DNA and Histone
mean_sce <- mean_sce[!grepl("DNA|Histone", rownames(mean_sce)),]
# Transform and scale
assay(mean_sce, "arcsinh") <- asinh(assay(mean_sce, "meanCounts"))
assay(mean_sce, "arcsinh_scaled") <- t(scale(t(asinh(assay(mean_sce, "meanCounts")))))
plotHeatmap(mean_sce, exprs_values = "arcsinh_scaled",
colour_columns_by = c("celltype"),
labels_col = mean_sce$cellAnnotation,
show_colnames = TRUE, annotation_legend = TRUE, borders_color = NA,
color = colorRampPalette(c("dark blue", "white", "dark red"))(100),
zlim = c(-4, 4),legend = TRUE)
clustering does not really pick up PDL1 positive Tumor cells (which definitely exist). Potentially we have to investigate this with a manual cut off. arcsinh > 1.75 seems to be reasonable
Additionally, the clustering did not pick up proliferating and non prolifertating tumor clusters. this should also be investigated by manual cut offs. arcsinh > 1.25 seems reasonable.
celltype_counts <- sce$celltype
table(celltype_counts)
# delete the "exprs" slot from the single cell experiment again.
assay(sce,"exprs") <- NULL
saveRDS(sce,file = "data/data_for_analysis/sce_protein.rds")
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04 LTS
Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.8.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=C
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] CATALYST_1.12.2 igraph_1.2.6
[3] Rphenograph_0.99.1.9003 viridis_0.5.1
[5] viridisLite_0.3.0 scater_1.16.2
[7] ggplot2_3.3.3 SingleCellExperiment_1.12.0
[9] SummarizedExperiment_1.20.0 Biobase_2.50.0
[11] GenomicRanges_1.42.0 GenomeInfoDb_1.26.2
[13] IRanges_2.24.1 S4Vectors_0.28.1
[15] BiocGenerics_0.36.0 MatrixGenerics_1.2.0
[17] matrixStats_0.57.0 LSD_4.1-0
[19] workflowr_1.6.2
loaded via a namespace (and not attached):
[1] readxl_1.3.1 circlize_0.4.12
[3] drc_3.0-1 plyr_1.8.6
[5] ConsensusClusterPlus_1.52.0 splines_4.0.3
[7] flowCore_2.0.1 BiocParallel_1.22.0
[9] TH.data_1.0-10 digest_0.6.27
[11] htmltools_0.5.0 magrittr_2.0.1
[13] CytoML_2.0.5 cluster_2.1.0
[15] openxlsx_4.2.3 ComplexHeatmap_2.4.3
[17] RcppParallel_5.0.2 sandwich_3.0-0
[19] flowWorkspace_4.0.6 cytolib_2.0.3
[21] jpeg_0.1-8.1 colorspace_2.0-0
[23] ggrepel_0.9.0 haven_2.3.1
[25] xfun_0.20 dplyr_1.0.2
[27] crayon_1.3.4 RCurl_1.98-1.2
[29] jsonlite_1.7.2 hexbin_1.28.2
[31] graph_1.66.0 survival_3.2-7
[33] zoo_1.8-8 glue_1.4.2
[35] gtable_0.3.0 nnls_1.4
[37] zlibbioc_1.36.0 XVector_0.30.0
[39] GetoptLong_1.0.5 DelayedArray_0.16.0
[41] ggcyto_1.16.0 car_3.0-10
[43] BiocSingular_1.4.0 Rgraphviz_2.32.0
[45] shape_1.4.5 abind_1.4-5
[47] scales_1.1.1 pheatmap_1.0.12
[49] mvtnorm_1.1-1 Rcpp_1.0.5
[51] plotrix_3.7-8 clue_0.3-58
[53] foreign_0.8-81 rsvd_1.0.3
[55] FlowSOM_1.20.0 tsne_0.1-3
[57] RColorBrewer_1.1-2 ellipsis_0.3.1
[59] farver_2.0.3 pkgconfig_2.0.3
[61] XML_3.99-0.5 reshape2_1.4.4
[63] tidyselect_1.1.0 rlang_0.4.10
[65] later_1.1.0.1 munsell_0.5.0
[67] cellranger_1.1.0 tools_4.0.3
[69] generics_0.1.0 ggridges_0.5.3
[71] evaluate_0.14 stringr_1.4.0
[73] yaml_2.2.1 knitr_1.30
[75] fs_1.5.0 zip_2.1.1
[77] purrr_0.3.4 RANN_2.6.1
[79] RBGL_1.64.0 xml2_1.3.2
[81] compiler_4.0.3 rstudioapi_0.13
[83] beeswarm_0.2.3 curl_4.3
[85] png_0.1-7 tibble_3.0.4
[87] stringi_1.5.3 forcats_0.5.0
[89] lattice_0.20-41 Matrix_1.3-2
[91] vctrs_0.3.6 pillar_1.4.7
[93] lifecycle_0.2.0 GlobalOptions_0.1.2
[95] BiocNeighbors_1.6.0 data.table_1.13.6
[97] cowplot_1.1.1 bitops_1.0-6
[99] irlba_2.3.3 httpuv_1.5.4
[101] R6_2.5.0 latticeExtra_0.6-29
[103] promises_1.1.1 gridExtra_2.3
[105] RProtoBufLib_2.0.0 rio_0.5.16
[107] vipor_0.4.5 codetools_0.2-18
[109] MASS_7.3-53 gtools_3.8.2
[111] rprojroot_2.0.2 rjson_0.2.20
[113] withr_2.3.0 multcomp_1.4-15
[115] GenomeInfoDbData_1.2.4 hms_0.5.3
[117] ncdfFlow_2.34.0 grid_4.0.3
[119] rmarkdown_2.6 DelayedMatrixStats_1.10.1
[121] carData_3.0-4 Rtsne_0.15
[123] git2r_0.28.0 base64enc_0.1-3
[125] ggbeeswarm_0.6.0