Last updated: 2021-02-10
Checks: 7 0
Knit directory: melanoma_publication_old_data/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200728)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 2e443a5. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: ._.DS_Store
Ignored: code/.DS_Store
Ignored: code/._.DS_Store
Ignored: code/helper_functions/._findCommunity.R
Ignored: data/.DS_Store
Ignored: data/._.DS_Store
Ignored: data/._layer_1_classification_rna.csv
Ignored: data/._survdat_for_modelling.csv
Ignored: data/12plex_validation/
Ignored: data/200323_TMA_256_Hot Cold_Clinical Data_Updated Response Data_For Collaborators_latest updated_Mar_2020_for_Coxph_modeling.csv
Ignored: data/layer_1_classification_protein.csv
Ignored: data/layer_1_classification_rna.csv
Ignored: data/manual_infiltration/
Ignored: data/protein/
Ignored: data/rna/
Ignored: data/safety_copy_SCE/
Ignored: data/sce_RNA.rds
Ignored: data/sce_protein.rds
Ignored: data/survdat_for_modelling.csv
Ignored: output/.DS_Store
Ignored: output/._.DS_Store
Ignored: output/._protein_neutrophil.png
Ignored: output/._rna_neutrophil.png
Ignored: output/PSOCKclusterOut/
Ignored: output/bcell_grouping.png
Ignored: output/dysfunction_correlation.pdf
Unstaged changes:
Modified: .gitignore
Modified: analysis/04_1_Protein_celltype_classification.rmd
Modified: analysis/04_1_RNA_celltype_classification.rmd
Deleted: code/findPackages.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Figure_5.rmd
) and HTML (docs/Figure_5.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 3f5af3f | toobiwankenobi | 2021-02-09 | add .html files |
Rmd | afa7957 | toobiwankenobi | 2021-02-08 | minor changes on figures and figure order |
Rmd | 20a1458 | toobiwankenobi | 2021-02-04 | adapt figure order |
Rmd | f9bb33a | toobiwankenobi | 2021-02-04 | new Figure 5 and minor changes in figure order |
Rmd | c3e8a47 | toobiwankenobi | 2020-10-12 | clean branch |
Rmd | 2c11d5c | toobiwankenobi | 2020-08-05 | add new scripts |
This script generates plots for Figure 5.
knitr::opts_chunk$set(echo = TRUE, message= FALSE)
knitr::opts_knit$set(root.dir = rprojroot::find_rstudio_root_file())
First, we will load the libraries needed for this part of the analysis.
sapply(list.files("code/helper_functions", full.names = TRUE), source)
code/helper_functions/calculateSummary.R
value ?
visible FALSE
code/helper_functions/censor_dat.R
value ?
visible FALSE
code/helper_functions/detect_mRNA_expression.R
value ?
visible FALSE
code/helper_functions/DistanceToClusterCenter.R
value ?
visible FALSE
code/helper_functions/findClusters.R
value ?
visible FALSE
code/helper_functions/findCommunity.R
value ?
visible FALSE
code/helper_functions/getCellCount.R
value ?
visible FALSE
code/helper_functions/getInfoFromString.R
value ?
visible FALSE
code/helper_functions/getSpotnumber.R
value ?
visible FALSE
code/helper_functions/plotBarFracCluster.R
value ?
visible FALSE
code/helper_functions/plotCellCounts.R
value ?
visible FALSE
code/helper_functions/plotCellFrac.R
value ?
visible FALSE
code/helper_functions/plotCellFracGroups.R
value ?
visible FALSE
code/helper_functions/plotCellFracGroupsSubset.R
value ?
visible FALSE
code/helper_functions/plotCellFractions.R
value ?
visible FALSE
code/helper_functions/plotDist.R
value ?
visible FALSE
code/helper_functions/scatter_function.R
value ?
visible FALSE
code/helper_functions/sceChecks.R
value ?
visible FALSE
code/helper_functions/validityChecks.R
value ?
visible FALSE
library(SingleCellExperiment)
library(reshape2)
library(tidyverse)
library(dplyr)
library(data.table)
library(ggplot2)
library(cba)
library(ComplexHeatmap)
library(colorRamps)
library(circlize)
library(RColorBrewer)
library(ggpubr)
library(ggbeeswarm)
library(gridExtra)
library(tidyr)
library(ggpmisc)
library(circlize)
library(coxme)
library(dittoSeq)
library(scater)
library(cowplot)
library(survminer)
library(ggalluvial)
library(cytomapper)
library(corrplot)
library(ggridges)
library(rstatix)
sce_rna = readRDS(file = "data/sce_RNA.rds")
sce_prot = readRDS(file = "data/sce_protein.rds")
# meta data
dat_relation = fread(file = "data/protein/Object relationships.csv",stringsAsFactors = FALSE)
dat_relation_rna = fread(file = "data/RNA/Object relationships.csv",stringsAsFactors = FALSE)
# image
image_mat_rna <- read.csv("data/rna/Image.csv")
# surv_dat
dat_survival_prot <- fread(file = "data/protein/clinical_data_protein.csv")
time_data = fread(file = "data/survdat_for_modelling.csv",stringsAsFactors = FALSE)
time_data$BlockID <- time_data$Block.ID
# prepare data and add cellID
dat_relation$cellID_first <- paste("protein", paste(dat_relation$`First Image Number`, dat_relation$`First Object Number`, sep = "_"), sep = "_")
dat_relation$cellID_second <- paste("protein", paste(dat_relation$`Second Image Number`, dat_relation$`Second Object Number`, sep = "_"), sep = "_")
# add celltype status to first and second label
celltype_first <- data.frame(colData(sce_prot))[,c("cellID", "celltype", "celltype_clustered")]
colnames(celltype_first) <- c("cellID_first", "celltype_first", "celltype_clust_first")
celltype_second <- data.frame(colData(sce_prot))[,c("cellID", "celltype", "celltype_clustered")]
colnames(celltype_second) <- c("cellID_second", "celltype_second", "celltype_clust_second")
dat_relation <- left_join(dat_relation, celltype_first, by = "cellID_first")
dat_relation <- left_join(dat_relation, celltype_second, by = "cellID_second")
colnames(dat_relation)[5] <- "FirstImageNumber"
# prepare data and add cellID
dat_relation_rna$cellID_first <- paste("RNA", paste(dat_relation_rna$`First Image Number`, dat_relation_rna$`First Object Number`, sep = "_"), sep = "_")
dat_relation_rna$cellID_second <- paste("RNA", paste(dat_relation_rna$`Second Image Number`, dat_relation_rna$`Second Object Number`, sep = "_"), sep = "_")
# add celltype status to first and second label
celltype_first <- data.frame(colData(sce_rna))[,c("cellID", "celltype_rf", "celltype_clustered")]
colnames(celltype_first) <- c("cellID_first", "celltype_first", "celltype_clust_first")
celltype_second <- data.frame(colData(sce_rna))[,c("cellID", "celltype_rf", "celltype_clustered")]
colnames(celltype_second) <- c("cellID_second", "celltype_second", "celltype_clust_second")
dat_relation_rna <- left_join(dat_relation_rna, celltype_first, by = "cellID_first")
dat_relation_rna <- left_join(dat_relation_rna, celltype_second, by = "cellID_second")
colnames(dat_relation_rna)[5] <- "FirstImageNumber"
# subset sce for inflamed/exhausted in high samples
sce_protein_sub <- sce_prot[, sce_prot$dysfunction_density %in% c("high - high dysfunction", "high - low dysfunction")]
# sample 9 images each
images <- data.frame(colData(sce_protein_sub)) %>%
distinct(ImageNumber, .keep_all = T) %>%
group_by(dysfunction_density) %>%
#filter(ImageNumber %in% sample(ImageNumber, 9)) %>%
select(ImageNumber, dysfunction_density)
return <- list()
for (i in c("high - high dysfunction", "high - low dysfunction")){
# title name
title_name <- i
# count interactions in 20 sample images
cur_dat_relation <- data.frame(dat_relation) %>%
filter(FirstImageNumber %in% images[images$dysfunction_density == i,]$ImageNumber) %>%
select("celltype_first" ,"celltype_second") %>%
dplyr::count(celltype_first,celltype_second) %>%
data.frame()
# remove tumor-tumor interactions
cur_dat_relation <- cur_dat_relation[cur_dat_relation$celltype_first != "Tumor",]
cur_dat_relation <- cur_dat_relation[cur_dat_relation$celltype_first != "unknown",]
cur_dat_relation <- cur_dat_relation[cur_dat_relation$celltype_second != "unknown",]
# count interactions
cur_dat_relation_subcluster <- data.frame(dat_relation) %>%
filter(FirstImageNumber %in% images[images$dysfunction_density == i,]$ImageNumber) %>%
select("celltype_first" , "celltype_clust_second") %>%
dplyr::count(celltype_first, celltype_clust_second) %>%
data.frame()
# remove tumor-tumor interactions
cur_dat_relation_subcluster <- cur_dat_relation_subcluster[cur_dat_relation_subcluster$celltype_first == "Tcytotoxic",]
cur_dat_relation_subcluster <- cur_dat_relation_subcluster[cur_dat_relation_subcluster$celltype_clust_second %in%
unique(sce_prot[,sce_prot$celltype == "Tumor"]$celltype_clustered),]
# return subcluster adj df
return[[i]] <- cur_dat_relation_subcluster
# make coord diagram
chordDiagramFromDataFrame(cur_dat_relation,
grid.col = metadata(sce_prot)$colour_vectors$celltype,
reduce = 0.05,
transparency = ifelse(cur_dat_relation[[1]] %in% c("Tcytotoxic"),0,0.6),
annotationTrack = c("grid"))
# add percentages
circos.track(track.index = 1, panel.fun = function(x, y) {
xlim = get.cell.meta.data("xlim")
ylim = get.cell.meta.data("ylim")
sector.name = get.cell.meta.data("sector.index")
xplot = get.cell.meta.data("xplot")
circos.lines(xlim, c(mean(ylim), mean(ylim)), lty = 3) # dotted line
by = ifelse(abs(xplot[2] - xplot[1]) > 30, 0.2, 0.5)
for(p in seq(by, 1, by = by)) {
circos.text(p*(xlim[2] - xlim[1]) + xlim[1], mean(ylim) + 0.1,
paste0(p*100, "%"), cex = 0.5, adj = c(0.5, 0), niceFacing = TRUE)
}
}, bg.border = NA)
}
# create legend for tumor subclusters
#lgd1 = Legend(labels = names(col_vec[grep("Tumor", names(col_vec))]), title = "Tumor\nSubclusters", legend_gp = gpar(fill = unname(col_vec[grep("Tumor", names(col_vec))])))
lgd2 = Legend(labels = names(metadata(sce_prot)$colour_vector$celltype), title = "Cell Type", legend_gp = gpar(fill = unname(metadata(sce_prot)$colour_vector$celltype)))
draw(packLegend(lgd2,
#lgd1,
gap = unit(2, "cm")))
celltypes <- data.frame(colData(sce_prot)) %>%
filter(celltype != "Tumor") %>%
group_by(ImageNumber, bcell_patch_score, dysfunction_score, celltype) %>%
summarise(n=n()) %>%
mutate(fraction = n/sum(n)) %>%
filter(is.na(dysfunction_score) == FALSE)
celltypes$bcell_patch_score <- as.character(celltypes$bcell_patch_score)
celltypes$bcell_patch_score <- factor(celltypes$bcell_patch_score, levels = c("no B cells", "no B cell patches", "small B cell patches", "TLS"))
stat.test <- celltypes %>%
group_by(celltype) %>%
wilcox_test(data = ., fraction ~ dysfunction_score) %>%
adjust_pvalue(method = "BH") %>%
add_significance("p.adj") %>%
add_x_position(x = "dysfunction_score", dodge = 0.8)
ggplot(celltypes, aes(x=celltype, y=fraction)) +
geom_boxplot(alpha=.5, lwd = 1, outlier.shape = NA, aes(fill=dysfunction_score)) +
#geom_jitter(alpha=1, position = position_jitterdodge(dodge.width = 0.75,jitter.width = 0.1), size = 4,
#aes(x = celltype, y = fraction, #col=ifelse(celltype %in% c("Bcell", "BnTcell"), bcell_patch_score, " "),
#group = dysfunction_score)) +
geom_quasirandom(dodge.width=0.75, alpha=1, size=1) +
stat_pvalue_manual(stat.test, x = "celltype", label = "p.adj.signif", size = 7, y.position = -0.05) +
theme_bw() +
theme(text = element_text(size = 16),
axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) +
guides(fill=guide_legend(title="Dysfunction Score", override.aes = c(lwd=0.5, alpha=1)), col=guide_legend(title="Bcell Score")) +
xlab("") +
ylab("Cell Type Fractions") +
scale_color_manual(values = c("black", "lightblue", "darkblue", "red", "red4"),
labels = c(" ", "no Bcells", "few Bcells", "small patches", "large patches"),
guide = TRUE)
# check images above median in low dysfunction group for B cells (all have large patches)
celltypes %>%
filter(dysfunction_score == "low dysfunction") %>%
filter(celltype == "Bcell") %>%
group_by(dysfunction_score) %>%
mutate(median_frac = median(fraction)) %>%
filter(fraction > median_frac)
# A tibble: 7 x 7
# Groups: dysfunction_score [1]
ImageNumber bcell_patch_sco… dysfunction_sco… celltype n fraction
<int> <fct> <chr> <chr> <int> <dbl>
1 29 TLS low dysfunction Bcell 885 0.134
2 33 TLS low dysfunction Bcell 4831 0.365
3 86 TLS low dysfunction Bcell 2400 0.252
4 95 TLS low dysfunction Bcell 1603 0.116
5 109 TLS low dysfunction Bcell 1333 0.254
6 114 TLS low dysfunction Bcell 2881 0.360
7 118 TLS low dysfunction Bcell 787 0.206
# … with 1 more variable: median_frac <dbl>
c <- data.frame(colData(sce_rna)) %>%
distinct(Description, .keep_all = T) %>%
filter(dysfunction_score %in% c("low dysfunction", "high dysfunction")) %>%
dplyr::count(MM_location, Location, dysfunction_score) %>%
ggplot(aes(axis1 = MM_location, axis2 = Location, axis3 = dysfunction_score,y=n))+
geom_alluvium(aes(fill=as.factor(dysfunction_score)))+
geom_stratum()+
geom_text(stat = "stratum", aes(label = after_stat(stratum))) +
theme_minimal()+
scale_x_discrete(limits = c("Met Location", "Punch Location", "Dysfunction Score"), expand = c(.2, .05)) +
theme(text = element_text(size=20)) +
guides(fill=guide_legend(title="Dysfunction Score")) +
ylab("Number of Samples")
plot(c)
a <- data.frame(colData(sce_rna)) %>%
distinct(Description, .keep_all = T) %>%
group_by(bcell_patch_score, dysfunction_score) %>%
summarise(n=n()) %>%
filter(is.na(dysfunction_score) == F) %>%
group_by(dysfunction_score) %>%
mutate(fraction = n / sum(n)) %>%
ungroup()
ggplot(a) +
geom_col(aes(y=dysfunction_score, x=fraction, fill=bcell_patch_score)) +
theme_minimal() +
theme(text = element_text(size = 22)) +
xlab("Fraction of Samples") +
ylab("") +
guides(fill=guide_legend(title="Bcell Score"))
# im_size
im_size <- as.data.frame(cbind(image_mat_rna$Metadata_Description, (image_mat_rna$Height_cellmask * image_mat_rna$Width_cellmask)/1000000))
names(im_size) <- c("Description", "mm2")
im_size$mm2 <- as.numeric(im_size$mm2)
cxcl13 <- data.frame(colData(sce_rna)) %>%
mutate(mmLocationPunch = paste(MM_location, Location, sep = "_")) %>%
filter(mmLocationPunch != "LN_M") %>% # remove LN margin samples
filter(CXCL13 == 1) %>%
group_by(Description, MM_location, celltype) %>%
summarise(n=n()) %>%
reshape2::dcast(Description + MM_location ~ celltype, value.var = "n", fill = 0)
all_images <- data.frame(colData(sce_rna)) %>%
mutate(mmLocationPunch = paste(MM_location, Location, sep = "_")) %>%
filter(mmLocationPunch != "LN_M") %>%
distinct(Description, .keep_all = T) %>%
select(Description)
# left_join to have all images
all_images <- left_join(all_images, cxcl13)
# replace NA
all_images[is.na(all_images)] <- 0
all_images <- all_images %>%
reshape2::melt(id.vars=c("Description", "MM_location"), variable.name = "celltype", value.name = "n")
# add mm2 and calculate density
all_images <- left_join(all_images, im_size)
all_images$density <- all_images$n / all_images$mm2
#
Bcell <- data.frame(colData(sce_rna)) %>%
distinct(Description, .keep_all = T) %>%
group_by(Description) %>%
select(Description, bcell_patch_score)
# add grouping
all_images <- left_join(all_images, Bcell[,c("Description","bcell_patch_score")]) %>%
filter(celltype %in% c("Tcytotoxic", "Tcell", "HLA-DR"))
#all_images$interaction <- interaction(all_images$celltype, all_images$bcell_patch_score)
ggplot(all_images,aes(x=bcell_patch_score, y = log10(as.numeric(density+1)), fill=celltype)) +
geom_boxplot(alpha=1, lwd=1, outlier.shape = NA) +
#scale_x_discrete(labels = rep(unique(all_images$bcell_patch_score), each = 3)) +
geom_quasirandom(dodge.width=0.75, alpha=1, size=2) +
#geom_line(aes(group = Description), alpha = ifelse(all_images$celltype != "HLA-DR", 0.6, 0), colour = "black") +
#geom_point(aes(group= interaction), position = position_dodge(0.75)) +
ylab("CXCL13 Expressing Cells per mm2\n(log10 + 1)") +
xlab("") +
theme_bw() +
theme(text = element_text(size=18),
axis.text.x = element_text(angle=45, vjust=1, hjust=1)) +
scale_fill_manual(values = unname(metadata(sce_rna)$colour_vectors$celltype[c("Tcytotoxic", "Tcell", "HLA-DR")]),
breaks = names(metadata(sce_rna)$colour_vectors$celltype[c("Tcytotoxic", "Tcell", "HLA-DR")])) +
#scale_color_manual(values = unname(metadata(sce_rna)$colour_vectors$celltype[c("Tcytotoxic", "Tcell", "HLA-DR")]),
#breaks = names(metadata(sce_rna)$colour_vectors$celltype[c("Tcytotoxic", "Tcell", "HLA-DR")]),
#guide = FALSE) +
guides(fill=guide_legend(title="Cell Type", override.aes = c(lwd=0.5)))
example <- findClusters(sce_prot[,sce_prot$Description == "C9"], sce_prot[,colData(sce_prot)$celltype %in% c("Bcell", "BnTcell")]$cellID,
'cellID',
'Center_X', 'Center_Y',
'Description',
distance = 15,
min_clust_size = 20,
output_colname = "example_patch")
Time difference of 2.19296 secs
[1] "clusters successfully added to sce object"
example <- findCommunity(example,
'cellID',
'Center_X', 'Center_Y',
'Description',
'example_patch',
distance = 50,
output_colname = "example_milieu",
plot = TRUE)
Time difference of 3.302347 secs
[1] "communities successfully added to sce object"
celltypes <- data.frame(colData(sce_prot)) %>%
mutate(mmLocationPunch = paste(MM_location, Location, sep = "_")) %>%
filter(mmLocationPunch != "LN_M") %>% # remove LN margin images
#filter(celltype != "Tumor") %>%
mutate(TCF7_PD1 = paste(PD1, TCF7, sep = "_")) %>%
group_by(PatientID,BlockID, Description, bcell_patch_score, celltype, TCF7_PD1) %>%
summarise(n=n()) %>%
reshape2::dcast(PatientID + BlockID + Description + bcell_patch_score + celltype ~ TCF7_PD1, value.var = "n", fill=0) %>%
reshape2::melt(id.vars = c("PatientID","BlockID", "Description", "bcell_patch_score", "celltype"),
variable.name = "TCF7_PD1", value.name = "n") %>%
group_by(Description, celltype) %>%
mutate(fraction = n/sum(n)) %>%
mutate(total_cells = sum(n)) %>%
ungroup() %>%
filter(celltype %in% c("Tcytotoxic", "Thelper"))
celltypes$bcell_patch_score <- as.character(celltypes$bcell_patch_score)
celltypes$bcell_patch_score <- factor(celltypes$bcell_patch_score, levels = c("no B cells", "no B cell patches", "small B cell patches", "TLS"))
stat.test <- celltypes %>%
group_by(celltype, TCF7_PD1) %>%
kruskal_test(data = ., fraction ~ bcell_patch_score) %>%
adjust_pvalue(method = "BH") %>%
add_significance("p.adj") %>%
mutate(group1 = celltype, group2 = TCF7_PD1) %>%
add_xy_position()
ggplot(celltypes, aes(x=TCF7_PD1, y=fraction)) +
geom_boxplot(alpha=1, lwd = 0.5, outlier.size = 0.5, aes(fill=bcell_patch_score)) +
stat_pvalue_manual(x = "group2", stat.test, y.position = -0.1, size = 6) +
theme_bw() +
theme(text = element_text(size = 14),
axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) +
guides(fill=guide_legend(title="Bcell Score", override.aes = c(lwd=0.5))) +
xlab("") +
ylab("Fraction of Population") +
facet_wrap(~celltype, scales = "free") +
ylim(-0.1,1.1)
# what fraction of each celltype is part of a milieu?
cur_dat <- data.frame(colData(sce_prot)) %>%
filter(Location != "CTRL") %>%
filter(celltype %in% c("Tcytotoxic", "Thelper")) %>%
mutate(status = paste(TCF7, PD1, sep = "_")) %>%
#filter(status == "TCF7+_PD1+") %>%
mutate(milieu_binary = ifelse(bcell_milieu > 0, 1, 0)) %>%
group_by(Description, milieu_binary, celltype, status) %>%
summarise(n=n()) %>%
group_by(Description, celltype, status) %>%
mutate(fraction_in_milieu = n / sum(n)) %>%
filter(milieu_binary == 1)
# what fraction of the total cell area is made up by cells that are part of a milieu
milieu_area <- data.frame(colData(sce_prot)) %>%
filter(Location != "CTRL") %>%
mutate(milieu_binary = ifelse(bcell_milieu > 0, 1, 0)) %>%
group_by(Description, milieu_binary) %>%
summarise(area = sum(Area)) %>%
group_by(Description) %>%
mutate(fraction_of_area = area / sum(area)) %>%
filter(row_number() == n())
sum <- left_join(cur_dat, milieu_area, by="Description")
# calculate metric - milieu_fraction divided by milieu-area-fraction (this normalizes the first metric)
sum$metric <- sum$fraction_in_milieu / sum$fraction_of_area
# one-sample t test
stat.test <- sum %>%
group_by(celltype, status) %>%
mutate(log10_metric = log10(metric)) %>%
t_test(log10_metric ~ 1, mu = 0, alternative = "greater", detailed = TRUE) %>%
adjust_pvalue() %>%
add_significance("p.adj")
ggplot(sum, aes(x=sum$status, y=log10(metric))) +
geom_boxplot(outlier.shape = NA) +
geom_quasirandom(size=0.75) +
geom_hline(yintercept = 0) +
facet_wrap(~celltype) +
theme_bw() +
theme(text=element_text(size=14),
axis.text.x = element_text(angle=45, vjust=1, hjust=1)) +
stat_pvalue_manual(
stat.test, x = "status", y.position = 1.5,
label = "p.adj.signif",
position = position_dodge(0.8),
size=7) +
ylab("Area-Normalized Log10 Fold-Change") +
xlab("") #+
#coord_cartesian(ylim=c(-1,1.75))
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04 LTS
Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.8.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=C
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] grid parallel stats4 stats graphics grDevices utils
[8] datasets methods base
other attached packages:
[1] rstatix_0.6.0 ggridges_0.5.3
[3] corrplot_0.84 cytomapper_1.3.1
[5] EBImage_4.32.0 ggalluvial_0.12.3
[7] survminer_0.4.8 cowplot_1.1.1
[9] scater_1.16.2 dittoSeq_1.0.2
[11] coxme_2.2-16 bdsmatrix_1.3-4
[13] survival_3.2-7 ggpmisc_0.3.7
[15] gridExtra_2.3 ggbeeswarm_0.6.0
[17] ggpubr_0.4.0 RColorBrewer_1.1-2
[19] circlize_0.4.12 colorRamps_2.3
[21] ComplexHeatmap_2.4.3 cba_0.2-21
[23] proxy_0.4-24 data.table_1.13.6
[25] forcats_0.5.0 stringr_1.4.0
[27] dplyr_1.0.2 purrr_0.3.4
[29] readr_1.4.0 tidyr_1.1.2
[31] tibble_3.0.4 ggplot2_3.3.3
[33] tidyverse_1.3.0 reshape2_1.4.4
[35] SingleCellExperiment_1.12.0 SummarizedExperiment_1.20.0
[37] Biobase_2.50.0 GenomicRanges_1.42.0
[39] GenomeInfoDb_1.26.2 IRanges_2.24.1
[41] S4Vectors_0.28.1 BiocGenerics_0.36.0
[43] MatrixGenerics_1.2.0 matrixStats_0.57.0
[45] workflowr_1.6.2
loaded via a namespace (and not attached):
[1] utf8_1.1.4 shinydashboard_0.7.1
[3] tidyselect_1.1.0 htmlwidgets_1.5.3
[5] BiocParallel_1.22.0 munsell_0.5.0
[7] units_0.6-7 codetools_0.2-18
[9] withr_2.3.0 colorspace_2.0-0
[11] knitr_1.30 rstudioapi_0.13
[13] ggsignif_0.6.0 labeling_0.4.2
[15] git2r_0.28.0 GenomeInfoDbData_1.2.4
[17] KMsurv_0.1-5 farver_2.0.3
[19] pheatmap_1.0.12 rprojroot_2.0.2
[21] vctrs_0.3.6 generics_0.1.0
[23] xfun_0.20 R6_2.5.0
[25] clue_0.3-58 rsvd_1.0.3
[27] locfit_1.5-9.4 concaveman_1.1.0
[29] bitops_1.0-6 DelayedArray_0.16.0
[31] assertthat_0.2.1 promises_1.1.1
[33] scales_1.1.1 beeswarm_0.2.3
[35] gtable_0.3.0 rlang_0.4.10
[37] systemfonts_0.3.2 GlobalOptions_0.1.2
[39] splines_4.0.3 broom_0.7.3
[41] yaml_2.2.1 abind_1.4-5
[43] modelr_0.1.8 backports_1.2.1
[45] httpuv_1.5.4 tools_4.0.3
[47] ellipsis_0.3.1 raster_3.4-5
[49] Rcpp_1.0.5 plyr_1.8.6
[51] zlibbioc_1.36.0 classInt_0.4-3
[53] RCurl_1.98-1.2 GetoptLong_1.0.5
[55] viridis_0.5.1 zoo_1.8-8
[57] haven_2.3.1 ggrepel_0.9.0
[59] cluster_2.1.0 fs_1.5.0
[61] magrittr_2.0.1 openxlsx_4.2.3
[63] RANN_2.6.1 reprex_0.3.0
[65] whisker_0.4 hms_0.5.3
[67] mime_0.9 evaluate_0.14
[69] fftwtools_0.9-9 xtable_1.8-4
[71] rio_0.5.16 jpeg_0.1-8.1
[73] readxl_1.3.1 shape_1.4.5
[75] compiler_4.0.3 V8_3.4.0
[77] KernSmooth_2.23-18 crayon_1.3.4
[79] htmltools_0.5.0 later_1.1.0.1
[81] tiff_0.1-6 lubridate_1.7.9.2
[83] DBI_1.1.0 dbplyr_2.0.0
[85] sf_0.9-7 Matrix_1.3-2
[87] car_3.0-10 cli_2.2.0
[89] pkgconfig_2.0.3 km.ci_0.5-2
[91] foreign_0.8-81 sp_1.4-5
[93] xml2_1.3.2 svglite_1.2.3.2
[95] vipor_0.4.5 XVector_0.30.0
[97] rvest_0.3.6 digest_0.6.27
[99] rmarkdown_2.6 cellranger_1.1.0
[101] survMisc_0.5.5 edgeR_3.30.3
[103] DelayedMatrixStats_1.10.1 gdtools_0.2.3
[105] curl_4.3 shiny_1.5.0
[107] rjson_0.2.20 lifecycle_0.2.0
[109] nlme_3.1-151 jsonlite_1.7.2
[111] carData_3.0-4 BiocNeighbors_1.6.0
[113] viridisLite_0.3.0 limma_3.44.3
[115] fansi_0.4.1 pillar_1.4.7
[117] lattice_0.20-41 fastmap_1.0.1
[119] httr_1.4.2 glue_1.4.2
[121] zip_2.1.1 png_0.1-7
[123] svgPanZoom_0.3.4 class_7.3-17
[125] stringi_1.5.3 BiocSingular_1.4.0
[127] e1071_1.7-4 irlba_2.3.3