Last updated: 2019-11-05

Checks: 2 0

Knit directory: SMF/

This reproducible R Markdown analysis was created with workflowr (version 1.5.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store

Untracked files:
    Untracked:  analysis/SmoothPMF.Rmd
    Untracked:  analysis/poissonmean.Rmd
    Untracked:  code/BMSM.R
    Untracked:  code/EBMPMF.R
    Untracked:  code/ebbp_beta_mixture.R
    Untracked:  code/ebpm_exp_mixture.R
    Untracked:  code/simulations.R
    Untracked:  code/update_f.R
    Untracked:  code/update_l.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd c04fafa Dongyue Xie 2019-11-06 wflow_publish(“analysis/index.Rmd”)
html 3e29775 Dongyue Xie 2019-11-06 Build site.
Rmd 1c5ae8a Dongyue Xie 2019-11-06 wflow_publish(“analysis/index.Rmd”)
html 901c1ac Dongyue Xie 2019-11-05 Build site.
html ae7c5a2 Dongyue Xie 2019-11-05 Build site.
Rmd 780cf65 Dongyue Xie 2019-11-05 wflow_publish(“analysis/index.Rmd”)
html 40293b8 Dongyue Xie 2019-10-30 Build site.
Rmd 4069be3 Dongyue Xie 2019-10-30 wflow_publish(“analysis/index.Rmd”)
html 87c7474 Dongyue Xie 2019-10-30 Build site.
Rmd 2c10833 Dongyue Xie 2019-10-30 wflow_publish(“analysis/index.Rmd”)
html f1eea6f Dongyue Xie 2019-10-30 Build site.
Rmd 4ff9774 Dongyue Xie 2019-10-30 wflow_publish(“analysis/index.Rmd”)
html 7a496a2 Dongyue Xie 2019-10-27 Build site.
Rmd ae96162 Dongyue Xie 2019-10-27 wflow_publish(“analysis/index.Rmd”)
html dded0dd Dongyue Xie 2019-10-17 Build site.
Rmd 3a5daa6 Dongyue Xie 2019-10-17 wflow_publish(“analysis/index.Rmd”)
html e68f5dc Dongyue Xie 2019-10-16 Build site.
Rmd 2da47b6 Dongyue Xie 2019-10-16 wflow_publish(“analysis/index.Rmd”)
html 2180b49 Dongyue Xie 2019-10-09 Build site.
Rmd fd882a9 Dongyue Xie 2019-10-09 rename
html 3e3c1f6 Dongyue Xie 2019-08-07 Build site.
Rmd ec8ee90 Dongyue Xie 2019-08-07 wflow_publish(“analysis/index.Rmd”)
html c9777ae Dongyue Xie 2019-07-31 Build site.
Rmd 1891060 Dongyue Xie 2019-07-31 wflow_publish(“analysis/index.Rmd”)
html f35c478 Dongyue Xie 2019-07-31 Build site.
Rmd 4a6ce42 Dongyue Xie 2019-07-31 wflow_publish(“analysis/index.Rmd”)
html aa75dc0 Dongyue Xie 2019-07-23 Build site.
Rmd 4b5e735 Dongyue Xie 2019-07-23 wflow_publish(“analysis/index.Rmd”)
html 05189b8 Dongyue Xie 2019-07-23 Build site.
Rmd 9e01a5d Dongyue Xie 2019-07-23 wflow_publish(“analysis/index.Rmd”)
html dcad299 Dongyue Xie 2019-07-23 Build site.
Rmd efdc25a Dongyue Xie 2019-07-23 Publish the initial files for myproject
html 456d9b0 Dongyue Xie 2019-07-23 Build site.
Rmd 319f369 Dongyue Xie 2019-07-19 Start workflowr project.

Overview

Explore functional/smoothed matrix factorization(MF): consider the MF problem \(Y = LF+E\), and assume \(L\) is sparse and \(F\) has smooth rows.

Main Results

EBMPMF

  1. Smoothed EBMF: Wavelet Smoothing + EBMF
  2. Smoothed PMD: Wavelet Smoothing + PMD, compared with 1.
  3. Smoothed EBMF for Poisson data: Wavelet Smoothing + Transformation + EBMF
  4. Smoothed EBPMF: Wavelet Smoothing + EBPMF (ad-hoc)
  5. Sparse NMF methods: Try some esixting sparse NMF methods.

Mis

  1. Functional PCA
  2. Summary of meeting on Aug 02
  3. Genome Annotation
  4. EM algorithm for Topic Model
  5. Analysis on Xing’s method

Ref

  1. Variational EM ppt, Variational EM paper
  2. A Comparative Simulation Study of Wavelet Shrinkage Estimators for Poisson Counts
  3. Multiscale Topic Tomography
  4. Bayesian Multiscale Models for Poisson Processes

Ideas

ZIP, EBBNP