Last updated: 2019-12-01

Checks: 2 0

Knit directory: SMF/

This reproducible R Markdown analysis was created with workflowr (version 1.5.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd c18d943 DongyueXie 2019-12-02 wflow_publish(“analysis/index.Rmd”)
html 86c3036 Dongyue Xie 2019-11-20 Build site.
Rmd d4506c1 Dongyue Xie 2019-11-20 wflow_publish(“analysis/index.Rmd”)
html 0052757 Dongyue Xie 2019-11-20 Build site.
Rmd fd3b2ba Dongyue Xie 2019-11-20 wflow_publish(“analysis/index.Rmd”)
html f9a8199 Dongyue Xie 2019-11-18 Build site.
Rmd acefe68 Dongyue Xie 2019-11-18 wflow_publish(“analysis/index.Rmd”)
html 4805917 Dongyue Xie 2019-11-18 Build site.
Rmd 4d19135 Dongyue Xie 2019-11-18 wflow_publish(“analysis/index.Rmd”)
html 971a3ed Dongyue Xie 2019-11-18 Build site.
Rmd 0f85dae Dongyue Xie 2019-11-18 wflow_publish(“analysis/index.Rmd”)
html 45c6d72 Dongyue Xie 2019-11-13 Build site.
Rmd 037fb80 Dongyue Xie 2019-11-13 wflow_publish(“analysis/index.Rmd”)
html 2b12f87 Dongyue Xie 2019-11-12 Build site.
Rmd 4ffc1d3 Dongyue Xie 2019-11-12 wflow_publish(“analysis/index.Rmd”)
html 533fbf5 Dongyue Xie 2019-11-12 Build site.
Rmd 55470e3 Dongyue Xie 2019-11-12 wflow_publish(“analysis/index.Rmd”)
html 37bde0c Dongyue Xie 2019-11-12 Build site.
Rmd 827dd12 Dongyue Xie 2019-11-12 wflow_publish(“analysis/index.Rmd”)
html d9d2c8e Dongyue Xie 2019-11-12 Build site.
Rmd d3949ba Dongyue Xie 2019-11-12 wflow_publish(“analysis/index.Rmd”)
html fadcfed Dongyue Xie 2019-11-11 Build site.
Rmd 5422f2a Dongyue Xie 2019-11-11 wflow_publish(“analysis/index.Rmd”)
html c210318 Dongyue Xie 2019-11-11 Build site.
Rmd 561eba1 Dongyue Xie 2019-11-11 wflow_publish(“analysis/index.Rmd”)
html 3ab97d0 Dongyue Xie 2019-11-09 Build site.
Rmd 0ad92df Dongyue Xie 2019-11-09 wflow_publish(“analysis/index.Rmd”)
html 1d4ea02 Dongyue Xie 2019-11-09 Build site.
Rmd 3b5f85e Dongyue Xie 2019-11-09 wflow_publish(“analysis/index.Rmd”)
html ccdafba Dongyue Xie 2019-11-08 Build site.
Rmd e1680d8 Dongyue Xie 2019-11-08 wflow_publish(“analysis/index.Rmd”)
html 755d1ac Dongyue Xie 2019-11-07 Build site.
Rmd 8a9758e Dongyue Xie 2019-11-07 wflow_publish(“analysis/index.Rmd”)
html 5bb5be3 Dongyue Xie 2019-11-06 Build site.
Rmd c04fafa Dongyue Xie 2019-11-06 wflow_publish(“analysis/index.Rmd”)
html 3e29775 Dongyue Xie 2019-11-06 Build site.
Rmd 1c5ae8a Dongyue Xie 2019-11-06 wflow_publish(“analysis/index.Rmd”)
html 901c1ac Dongyue Xie 2019-11-05 Build site.
html ae7c5a2 Dongyue Xie 2019-11-05 Build site.
Rmd 780cf65 Dongyue Xie 2019-11-05 wflow_publish(“analysis/index.Rmd”)
html 40293b8 Dongyue Xie 2019-10-30 Build site.
Rmd 4069be3 Dongyue Xie 2019-10-30 wflow_publish(“analysis/index.Rmd”)
html 87c7474 Dongyue Xie 2019-10-30 Build site.
Rmd 2c10833 Dongyue Xie 2019-10-30 wflow_publish(“analysis/index.Rmd”)
html f1eea6f Dongyue Xie 2019-10-30 Build site.
Rmd 4ff9774 Dongyue Xie 2019-10-30 wflow_publish(“analysis/index.Rmd”)
html 7a496a2 Dongyue Xie 2019-10-27 Build site.
Rmd ae96162 Dongyue Xie 2019-10-27 wflow_publish(“analysis/index.Rmd”)
html dded0dd Dongyue Xie 2019-10-17 Build site.
Rmd 3a5daa6 Dongyue Xie 2019-10-17 wflow_publish(“analysis/index.Rmd”)
html e68f5dc Dongyue Xie 2019-10-16 Build site.
Rmd 2da47b6 Dongyue Xie 2019-10-16 wflow_publish(“analysis/index.Rmd”)
html 2180b49 Dongyue Xie 2019-10-09 Build site.
Rmd fd882a9 Dongyue Xie 2019-10-09 rename
html 3e3c1f6 Dongyue Xie 2019-08-07 Build site.
Rmd ec8ee90 Dongyue Xie 2019-08-07 wflow_publish(“analysis/index.Rmd”)
html c9777ae Dongyue Xie 2019-07-31 Build site.
Rmd 1891060 Dongyue Xie 2019-07-31 wflow_publish(“analysis/index.Rmd”)
html f35c478 Dongyue Xie 2019-07-31 Build site.
Rmd 4a6ce42 Dongyue Xie 2019-07-31 wflow_publish(“analysis/index.Rmd”)
html aa75dc0 Dongyue Xie 2019-07-23 Build site.
Rmd 4b5e735 Dongyue Xie 2019-07-23 wflow_publish(“analysis/index.Rmd”)
html 05189b8 Dongyue Xie 2019-07-23 Build site.
Rmd 9e01a5d Dongyue Xie 2019-07-23 wflow_publish(“analysis/index.Rmd”)
html dcad299 Dongyue Xie 2019-07-23 Build site.
Rmd efdc25a Dongyue Xie 2019-07-23 Publish the initial files for myproject
html 456d9b0 Dongyue Xie 2019-07-23 Build site.
Rmd 319f369 Dongyue Xie 2019-07-19 Start workflowr project.

Overview

Explore functional/smoothed matrix factorization(MF): consider the MF problem \(Y = LF+E\), and assume \(L\) is sparse and \(F\) has smooth rows.

Main Results

EBMPMF

  1. Smoothed EBMF: Wavelet Smoothing + EBMF
  2. Smoothed PMD: Wavelet Smoothing + PMD, compared with 1.
  3. Smoothed EBMF for Poisson data: Wavelet Smoothing + Transformation + EBMF
  4. EBMPMF, EBMPMF2: EBMPMF simple examples.
  5. Smoothed vs Non-smoothed: illustrate how smoothing could help when factors are indeed smooth.
  6. Sparse NMF methods: Try some esixting sparse NMF methods.
  7. VST NMF: does VST work well for NMF?
  8. EBMPMF and nugget effect
  9. Apply stm to GTEx data, gene splicing

PTF

  1. Trend Filtering
  2. Trend filtering and dynamic linear model
  3. Examples
  4. Poisson Trend Filtering: first try of the ptf method, implemented optimization-based method to see if it works.
  5. Basis selection in TF

EBPM

  1. Empirical Bayes Poisson Mean large scale
  2. Compare ebpm estimate from different scales
  3. EBPM scale invariant version: when \(s\) is large, little shrinkage compared with MLE.
  4. EBPM mixture of two gamma distributions: fix prior grid at truth.
  5. EBPM mixture of two gamma distributions: closer priors make it harder to shrink.
  6. EBPM mixture of two gamma distributions: same shape diff rate in priors.

Mis

  1. Functional PCA
  2. Summary of meeting on Aug 02
  3. Genome Annotation
  4. EM algorithm for Topic Model
  5. Analysis on Xing’s method
  6. command line and github tips

Ref

  1. Variational EM ppt, Variational EM paper
  2. A Comparative Simulation Study of Wavelet Shrinkage Estimators for Poisson Counts
  3. Multiscale Topic Tomography
  4. Bayesian Multiscale Models for Poisson Processes